summaryrefslogtreecommitdiff
path: root/cli/app/utils/im_utils.py
diff options
context:
space:
mode:
Diffstat (limited to 'cli/app/utils/im_utils.py')
-rw-r--r--cli/app/utils/im_utils.py556
1 files changed, 556 insertions, 0 deletions
diff --git a/cli/app/utils/im_utils.py b/cli/app/utils/im_utils.py
new file mode 100644
index 0000000..ab6467e
--- /dev/null
+++ b/cli/app/utils/im_utils.py
@@ -0,0 +1,556 @@
+import sys
+import os
+from os.path import join
+import cv2 as cv
+import imagehash
+from PIL import Image, ImageDraw, ImageFilter, ImageOps
+from skimage.filters.rank import entropy
+from skimage.morphology import disk
+from skimage import feature
+# import matplotlib.pyplot as plt
+import imutils
+import time
+import numpy as np
+from sklearn.metrics.pairwise import cosine_similarity
+import datetime
+
+def ensure_pil(im):
+ """Ensure image is Pillow format"""
+ try:
+ im.verify()
+ return im
+ except:
+ return Image.fromarray(im.astype('uint8'), 'RGB')
+
+def ensure_np(im):
+ """Ensure image is numpy array"""
+ if type(im) == np.ndarray:
+ return im
+ return np.asarray(im, np.uint8)
+
+def num_channels(im):
+ '''Returns number of channels in numpy.ndarray image'''
+ if len(im.shape) > 2:
+ return im.shape[2]
+ else:
+ return 1
+
+def is_grayscale(im, threshold=5):
+ """Returns True if image is grayscale
+ :param im: (numpy.array) image
+ :return (bool) of if image is grayscale"""
+ b = im[:,:,0]
+ g = im[:,:,1]
+ mean = np.mean(np.abs(g - b))
+ return mean < threshold
+
+
+def compute_features(fe,frames,phashes,phash_thresh=1):
+ """
+ Get vector embedding using FeatureExtractor
+ :param fe: FeatureExtractor class
+ :param frames: list of frame images as numpy.ndarray
+ :param phash_thresh: perceptual hash threshold
+ :returns: list of feature vectors
+ """
+ vals = []
+ phash_pre = phashes[0]
+ for i,im in enumerate(frames):
+ if i == 0 or (phashes[i] - phashes[i-1]) > phash_thresh:
+ vals.append(fe.extract(im))
+ else:
+ vals.append(vals[i-1])
+ return vals
+
+
+def np2pil(im, swap=True):
+ """Ensure image is Pillow format
+ :param im: image in numpy or PIL.Image format
+ :returns: image in Pillow RGB format
+ """
+ try:
+ im.verify()
+ return im
+ except:
+ if swap:
+ im = cv.cvtColor(im,cv.COLOR_BGR2RGB)
+ return Image.fromarray(im.astype('uint8'), 'RGB')
+
+def pil2np(im, swap=True):
+ """Ensure image is Numpy.ndarry format
+ :param im: image in numpy or PIL.Image format
+ :returns: image in Numpy uint8 format
+ """
+ if type(im) == np.ndarray:
+ return im
+ im = np.asarray(im, np.uint8)
+ if swap:
+ im = cv.cvtColor(im, cv.COLOR_RGB2BGR)
+ return im
+
+
+def resize(im, width=0, height=0):
+ """resize image using imutils. Use w/h=[0 || None] to prioritize other edge size
+ :param im: a Numpy.ndarray image
+ :param wh: a tuple of (width, height)
+ """
+ # TODO change to cv.resize and add algorithm choices
+ w = width
+ h = height
+ if w is 0 and h is 0:
+ return im
+ elif w > 0 and h > 0:
+ ws = im.shape[1] / w
+ hs = im.shape[0] / h
+ if ws > hs:
+ return imutils.resize(im, width=w)
+ else:
+ return imutils.resize(im, height=h)
+ elif w > 0 and h is 0:
+ return imutils.resize(im, width=w)
+ elif w is 0 and h > 0:
+ return imutils.resize(im, height=h)
+ else:
+ return im
+
+def filter_pixellate(im,num_cells):
+ """Pixellate image by downsample then upsample
+ :param im: PIL.Image
+ :returns: PIL.Image
+ """
+ w,h = im.size
+ im = im.resize((num_cells,num_cells), Image.NEAREST)
+ im = im.resize((w,h), Image.NEAREST)
+ return im
+
+# Plot images inline using Matplotlib
+# def pltimg(im,title=None,mode='rgb',figsize=(8,12),dpi=160,output=None):
+# plt.figure(figsize=figsize)
+# plt.xticks([]),plt.yticks([])
+# if title is not None:
+# plt.title(title)
+# if mode.lower() == 'bgr':
+# im = cv.cvtColor(im,cv.COLOR_BGR2RGB)
+
+# f = plt.gcf()
+# if mode.lower() =='grey' or mode.lower() == 'gray':
+# plt.imshow(im,cmap='gray')
+# else:
+# plt.imshow(im)
+# plt.show()
+# plt.draw()
+# if output is not None:
+# bbox_inches='tight'
+# ext=osp.splitext(output)[1].replace('.','')
+# f.savefig(output,dpi=dpi,format=ext)
+# print('Image saved to: {}'.format(output))
+
+
+
+# Utilities for analyzing frames
+
+def compute_gray(im):
+ im = cv.cvtColor(im,cv.COLOR_BGR2GRAY)
+ n_vals = float(im.shape[0] * im.shape[1])
+ avg = np.sum(im[:]) / n_vals
+ return avg
+
+def compute_rgb(im):
+ im = cv.cvtColor(im,cv.COLOR_BGR2RGB)
+ n_vals = float(im.shape[0] * im.shape[1])
+ avg_r = np.sum(im[:,:,0]) / n_vals
+ avg_g = np.sum(im[:,:,1]) / n_vals
+ avg_b = np.sum(im[:,:,2]) / n_vals
+ avg_rgb = np.sum(im[:,:,:]) / (n_vals * 3.0)
+ return avg_r, avg_b, avg_g, avg_rgb
+
+def compute_hsv(im):
+ im = cv.cvtColor(im,cv.COLOR_BGR2HSV)
+ n_vals = float(im.shape[0] * im.shape[1])
+ avg_h = np.sum(frame[:,:,0]) / n_vals
+ avg_s = np.sum(frame[:,:,1]) / n_vals
+ avg_v = np.sum(frame[:,:,2]) / n_vals
+ avg_hsv = np.sum(frame[:,:,:]) / (n_vals * 3.0)
+ return avg_h, avg_s, avg_v, avg_hsv
+
+def pys_dhash(im, hashSize=8):
+ # resize the input image, adding a single column (width) so we
+ # can compute the horizontal gradient
+ resized = cv.resize(im, (hashSize + 1, hashSize))
+ # compute the (relative) horizontal gradient between adjacent
+ # column pixels
+ diff = resized[:, 1:] > resized[:, :-1]
+ # convert the difference image to a hash
+ return sum([2 ** i for (i, v) in enumerate(diff.flatten()) if v])
+
+
+############################################
+# ImageHash
+# pip install imagehash
+############################################
+
+
+def compute_ahash(im):
+ """Compute average hash using ImageHash library
+ :param im: Numpy.ndarray
+ :returns: Imagehash.ImageHash
+ """
+ return imagehash.average_hash(ensure_pil(im_pil))
+
+def compute_phash(im):
+ """Compute perceptual hash using ImageHash library
+ :param im: Numpy.ndarray
+ :returns: Imagehash.ImageHash
+ """
+ return imagehash.phash(ensure_pil(im))
+
+def compute_dhash(im):
+ """Compute difference hash using ImageHash library
+ :param im: Numpy.ndarray
+ :returns: Imagehash.ImageHash
+ """
+ return imagehash.dhash(ensure_pil(im))
+
+def compute_whash(im):
+ """Compute wavelet hash using ImageHash library
+ :param im: Numpy.ndarray
+ :returns: Imagehash.ImageHash
+ """
+ return imagehash.whash(ensure_pil(im))
+
+def compute_whash_b64(im):
+ """Compute wavelest hash base64 using ImageHash library
+ :param im: Numpy.ndarray
+ :returns: Imagehash.ImageHash
+ """
+ return lambda im: imagehash.whash(ensure_pil(im), mode='db4')
+
+
+############################################
+# Pillow
+############################################
+
+def sharpen(im):
+ """Sharpen image using PIL.ImageFilter
+ param: im: PIL.Image
+ returns: PIL.Image
+ """
+ im = ensure_pil(im)
+ im.filter(ImageFilter.SHARPEN)
+ return ensure_np(im)
+
+def fit_image(im,targ_size):
+ """Force fit image by cropping
+ param: im: PIL.Image
+ param: targ_size: a tuple of target (width, height)
+ returns: PIL.Image
+ """
+ im_pil = ensure_pil(im)
+ frame_pil = ImageOps.fit(im_pil, targ_size,
+ method=Image.BICUBIC, centering=(0.5, 0.5))
+ return ensure_np(frame_pil)
+
+
+def compute_entropy(im):
+ entr_img = entropy(im, disk(10))
+
+
+############################################
+# scikit-learn
+############################################
+
+def compute_entropy(im):
+ # im is grayscale numpy
+ return entropy(im, disk(10))
+
+############################################
+# OpenCV
+############################################
+
+def bgr2gray(im):
+ """Wrapper for cv2.cvtColor transform
+ :param im: Numpy.ndarray (BGR)
+ :returns: Numpy.ndarray (Gray)
+ """
+ return cv.cvtColor(im,cv.COLOR_BGR2GRAY)
+
+def gray2bgr(im):
+ """Wrapper for cv2.cvtColor transform
+ :param im: Numpy.ndarray (Gray)
+ :returns: Numpy.ndarray (BGR)
+ """
+ return cv.cvtColor(im,cv.COLOR_GRAY2BGR)
+
+def bgr2rgb(im):
+ """Wrapper for cv2.cvtColor transform
+ :param im: Numpy.ndarray (BGR)
+ :returns: Numpy.ndarray (RGB)
+ """
+ return cv.cvtColor(im,cv.COLOR_BGR2RGB)
+
+def rgb2bgr(im):
+ """Wrapper for cv2.cvtColor transform
+ :param im: Numpy.ndarray (BGR)
+ :returns: Numpy.ndarray (RGB)
+ """
+ return cv.cvtColor(im,cv.COLOR_RGB2BGR)
+
+def compute_laplacian(im):
+ # below 100 is usually blurry
+ return cv.Laplacian(im, cv.CV_64F).var()
+
+
+# http://radjkarl.github.io/imgProcessor/index.html#
+
+def modifiedLaplacian(img):
+ ''''LAPM' algorithm (Nayar89)'''
+ M = np.array([-1, 2, -1])
+ G = cv.getGaussianKernel(ksize=3, sigma=-1)
+ Lx = cv.sepFilter2D(src=img, ddepth=cv.CV_64F, kernelX=M, kernelY=G)
+ Ly = cv.sepFilter2D(src=img, ddepth=cv.CV_64F, kernelX=G, kernelY=M)
+ FM = np.abs(Lx) + np.abs(Ly)
+ return cv.mean(FM)[0]
+
+def varianceOfLaplacian(img):
+ ''''LAPV' algorithm (Pech2000)'''
+ lap = cv.Laplacian(img, ddepth=-1)#cv.cv.CV_64F)
+ stdev = cv.meanStdDev(lap)[1]
+ s = stdev[0]**2
+ return s[0]
+
+def tenengrad(img, ksize=3):
+ ''''TENG' algorithm (Krotkov86)'''
+ Gx = cv.Sobel(img, ddepth=cv.CV_64F, dx=1, dy=0, ksize=ksize)
+ Gy = cv.Sobel(img, ddepth=cv.CV_64F, dx=0, dy=1, ksize=ksize)
+ FM = Gx**2 + Gy**2
+ return cv.mean(FM)[0]
+
+def normalizedGraylevelVariance(img):
+ ''''GLVN' algorithm (Santos97)'''
+ mean, stdev = cv.meanStdDev(img)
+ s = stdev[0]**2 / mean[0]
+ return s[0]
+
+def is_blank(im,width=100,sigma=0,thresh_canny=.1,thresh_mean=4,mask=None):
+ # im is graysacale np
+ #im = imutils.resize(im,width=width)
+ #mask = imutils.resize(mask,width=width)
+ if mask is not None:
+ im_canny = feature.canny(im,sigma=sigma,mask=mask)
+ total = len(np.where(mask > 0)[0])
+ else:
+ im_canny = feature.canny(im,sigma=sigma)
+ total = (im.shape[0]*im.shape[1])
+ n_white = len(np.where(im_canny > 0)[0])
+ per = n_white/total
+ if np.mean(im) < thresh_mean or per < thresh_canny:
+ return 1
+ else:
+ return 0
+
+
+def print_timing(t,n):
+ t = time.time()-t
+ print('Elapsed time: {:.2f}'.format(t))
+ print('FPS: {:.2f}'.format(n/t))
+
+def vid2frames(fpath, limit=5000, width=None, idxs=None):
+ """Convert a video file into list of frames
+ :param fpath: filepath to the video file
+ :param limit: maximum number of frames to read
+ :param fpath: the indices of frames to keep (rest are skipped)
+ :returns: (fps, number of frames, list of Numpy.ndarray frames)
+ """
+ frames = []
+ try:
+ cap = cv.VideoCapture(fpath)
+ except:
+ print('[-] Error. Could not read video file: {}'.format(fpath))
+ try:
+ cap.release()
+ except:
+ pass
+ return frames
+
+ fps = cap.get(cv.CAP_PROP_FPS)
+ nframes = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
+
+ if idxs is not None:
+ # read sample indices by seeking to frame index
+ for idx in idxs:
+ cap.set(cv.CAP_PROP_POS_FRAMES, idx)
+ res, frame = cap.read()
+ if width is not None:
+ frame = imutils.resize(frame, width=width)
+ frames.append(frame)
+ else:
+ while(True and len(frames) < limit):
+ res, frame = cap.read()
+ if not res:
+ break
+ if width is not None:
+ frame = imutils.resize(frame, width=width)
+ frames.append(frame)
+
+ cap.release()
+ del cap
+ #return fps,nframes,frames
+ return frames
+
+def convolve_filter(vals,filters=[1]):
+ for k in filters:
+ vals_tmp = np.zeros_like(vals)
+ t = len(vals_tmp)
+ for i,v in enumerate(vals):
+ sum_vals = vals[max(0,i-k):min(t-1,i+k)]
+ vals_tmp[i] = np.mean(sum_vals)
+ vals = vals_tmp.copy()
+ return vals
+
+def cosine_delta(v1,v2):
+ return 1.0 - cosine_similarity(v1.reshape((1, -1)), v2.reshape((1, -1)))[0][0]
+
+
+
+def compute_edges(vals):
+ # find edges (1 = rising, -1 = falling)
+ edges = np.zeros_like(vals)
+ for i in range(len(vals[1:])):
+ delta = vals[i] - vals[i-1]
+ if delta == -1:
+ edges[i] = 1 # rising edge 0 --> 1
+ elif delta == 1:
+ edges[i+1] = 2 # falling edge 1 --> 0
+ # get index for rise fall
+ rising = np.where(np.array(edges) == 1)[0]
+ falling = np.where(np.array(edges) == 2)[0]
+ return rising, falling
+
+
+############################################
+# Point, Rect
+############################################
+
+class Point(object):
+ def __init__(self, x, y):
+ self.x = x
+ self.y = y
+
+class Rect(object):
+ def __init__(self, p1, p2):
+ '''Store the top, bottom, left and right values for points
+ p1 and p2 are the (corners) in either order
+ '''
+ self.left = min(p1.x, p2.x)
+ self.right = max(p1.x, p2.x)
+ self.top = min(p1.y, p2.y)
+ self.bottom = max(p1.y, p2.y)
+
+def overlap(r1, r2):
+ '''Overlapping rectangles overlap both horizontally & vertically
+ '''
+ return range_overlap(r1.left, r1.right, r2.left, r2.right) and \
+ range_overlap(r1.top, r1.bottom, r2.top, r2.bottom)
+
+def range_overlap(a_min, a_max, b_min, b_max):
+ '''Neither range is completely greater than the other
+ '''
+ return (a_min <= b_max) and (b_min <= a_max)
+
+def merge_rects(r1,r2):
+ p1 = Point(min(r1.left,r2.left),min(r1.top,r2.top))
+ p2 = Point(max(r1.right,r2.right),max(r1.bottom,r2.bottom))
+ return Rect(p1,p2)
+
+def is_overlapping(r1,r2):
+ """r1,r2 as [x1,y1,x2,y2] list"""
+ r1x = Rect(Point(r1[0],r1[1]),Point(r1[2],r1[3]))
+ r2x = Rect(Point(r2[0],r2[1]),Point(r2[2],r2[3]))
+ return overlap(r1x,r2x)
+
+def get_rects_merged(rects,bounds,expand=0):
+ """rects: list of points in [x1,y1,x2,y2] format"""
+ rects_expanded = []
+ bx,by = bounds
+ # expand
+ for x1,y1,x2,y2 in rects:
+ x1 = max(0,x1-expand)
+ y1 = max(0,y1-expand)
+ x2 = min(bx,x2+expand)
+ y2 = min(by,y2+expand)
+ rects_expanded.append(Rect(Point(x1,y1),Point(x2,y2)))
+
+ #rects_expanded = [Rect(Point(x1,y1),Point(x2,y2)) for x1,y1,x2,y2 in rects_expanded]
+ rects_merged = []
+ for i,r in enumerate(rects_expanded):
+ found = False
+ for j,rm in enumerate(rects_merged):
+ if overlap(r,rm):
+ rects_merged[j] = merge_rects(r,rm) #expand
+ found = True
+ if not found:
+ rects_merged.append(r)
+ # convert back to [x1,y1,x2,y2] format
+ rects_merged = [(r.left,r.top,r.right,r.bottom) for r in rects_merged]
+ # contract
+ rects_contracted = []
+ for x1,y1,x2,y2 in rects_merged:
+ x1 = min(bx,x1+expand)
+ y1 = min(by,y1+expand)
+ x2 = max(0,x2-expand)
+ y2 = max(0,y2-expand)
+ rects_contracted.append((x1,y1,x2,y2))
+
+ return rects_contracted
+
+
+############################################
+# Image display
+############################################
+
+
+def montage(frames,ncols=4,nrows=None,width=None):
+ """Convert list of frames into a grid montage
+ param: frames: list of frames as Numpy.ndarray
+ param: ncols: number of columns
+ param: width: resize images to this width before adding to grid
+ returns: Numpy.ndarray grid of all images
+ """
+
+ # expand image size if not enough frames
+ if nrows is not None and len(frames) < ncols * nrows:
+ blank = np.zeros_like(frames[0])
+ n = ncols * nrows - len(frames)
+ for i in range(n): frames.append(blank)
+
+ rows = []
+ for i,im in enumerate(frames):
+ if width is not None:
+ im = imutils.resize(im,width=width)
+ h,w = im.shape[:2]
+ if i % ncols == 0:
+ if i > 0:
+ rows.append(ims)
+ ims = []
+ ims.append(im)
+ if len(ims) > 0:
+ for j in range(ncols-len(ims)):
+ ims.append(np.zeros_like(im))
+ rows.append(ims)
+ row_ims = []
+ for row in rows:
+ row_im = np.hstack(np.array(row))
+ row_ims.append(row_im)
+ contact_sheet = np.vstack(np.array(row_ims))
+ return contact_sheet
+
+
+def make_np_im(wh, color=(0,0,0)):
+ '''Creates Numpy image
+ :param wh: (int, int) width height
+ :param color: (int, int, int) in RGB
+ '''
+ w,h = wh
+ im = np.ones([h,w,3], dtype=np.uint8)
+ im[:] = color[::-1]
+ return im \ No newline at end of file