summaryrefslogtreecommitdiff
path: root/cli/app/search
diff options
context:
space:
mode:
Diffstat (limited to 'cli/app/search')
-rw-r--r--cli/app/search/search_km.py86
-rw-r--r--cli/app/search/util.py78
2 files changed, 164 insertions, 0 deletions
diff --git a/cli/app/search/search_km.py b/cli/app/search/search_km.py
new file mode 100644
index 0000000..bdffbe4
--- /dev/null
+++ b/cli/app/search/search_km.py
@@ -0,0 +1,86 @@
+import cStringIO
+import numpy as np
+import PIL.Image
+from scipy.stats import truncnorm
+import tensorflow as tf
+import tensorflow_hub as hub
+import cv2
+
+module_path = 'https://tfhub.dev/deepmind/biggan-128/2' # 128x128 BigGAN
+# module_path = 'https://tfhub.dev/deepmind/biggan-256/2' # 256x256 BigGAN
+# module_path = 'https://tfhub.dev/deepmind/biggan-512/2' # 512x512 BigGAN
+
+tf.reset_default_graph()
+module = hub.Module(module_path)
+inputs = {k: tf.placeholder(v.dtype, v.get_shape().as_list(), k)
+ for k, v in module.get_input_info_dict().iteritems()}
+output = module(inputs)
+
+input_z = inputs['z']
+input_y = inputs['y']
+input_trunc = inputs['truncation']
+
+dim_z = input_z.shape.as_list()[1]
+vocab_size = input_y.shape.as_list()[1]
+
+initializer = tf.global_variables_initializer()
+sess = tf.Session()
+sess.run(initializer)
+
+y = 259 # pomeranian
+n_samples = 9
+truncation = 0.5
+
+# phi_target = imread(uploaded.keys()[0])
+# phi_target = imconvert_float32(phi_target)
+# phi_target = np.expand_dims(phi_target, 0)
+# phi_target = phi_target[:128,:128]
+# phi_target = np.repeat(phi_target, n_samples, axis=0)
+
+label = one_hot([y] * n_samples, vocab_size)
+
+# use z from manifold
+if uploaded is not None:
+ z_target = np.repeat(truncated_z_sample(1, truncation, 0), n_samples, axis=0)
+ feed_dict = {input_z: z_target, input_y: label, input_trunc: truncation}
+ phi_target = sess.run(output, feed_dict=feed_dict)
+
+target_im = imgrid(imconvert_uint8(phi_target), cols=3)
+cost = tf.reduce_sum(tf.pow(output - phi_target, 2))
+dc_dz, = tf.gradients(cost, [input_z])
+
+lr = 0.0001
+z_guess = np.asarray(truncated_z_sample(n_samples, truncation/2, 1))
+feed_dict = {input_z: z_guess, input_y: label, input_trunc: truncation}
+phi_impostor = sess.run(output, feed_dict=feed_dict)
+impostor_im = imgrid(imconvert_uint8(phi_impostor), cols=3)
+comparison = None
+
+try:
+ for i in range(1000):
+ feed_dict = {input_z: z_guess, input_y: label, input_trunc: truncation}
+ grad = dc_dz.eval(session=sess, feed_dict=feed_dict)
+ z_guess -= grad * lr
+
+ # decay/attenuate learning rate to 0.05 of the original over 1000 frames
+ lr *= 0.997
+
+ indices = np.logical_or(z_guess <= -2*truncation, z_guess >= +2*truncation)
+ z_guess[indices] = np.random.randn(np.count_nonzero(indices))
+
+ feed_dict = {input_z: z_guess, input_y: label, input_trunc: truncation}
+ phi_guess = sess.run(output, feed_dict=feed_dict)
+ guess_im = imgrid(imconvert_uint8(phi_guess), cols=3)
+
+ imwrite('frames/{:06d}.png'.format(i), guess_im)
+
+ # display the progress every 10 frames
+ if i % 10 == 0:
+ comparison = imgrid(np.asarray([impostor_im, guess_im, target_im]), cols=3, pad=10)
+
+ # clear_output(wait=True)
+ print('lr: {}, iter: {}, grad_std: {}'.format(lr, i, np.std(grad)))
+ imshow(comparison, format='jpeg')
+except KeyboardInterrupt:
+ pass
+
diff --git a/cli/app/search/util.py b/cli/app/search/util.py
new file mode 100644
index 0000000..a4cdfd9
--- /dev/null
+++ b/cli/app/search/util.py
@@ -0,0 +1,78 @@
+
+def truncated_z_sample(batch_size, truncation=1., seed=None):
+ state = None if seed is None else np.random.RandomState(seed)
+ values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state)
+ return truncation * values
+
+def one_hot(index, vocab_size=vocab_size):
+ index = np.asarray(index)
+ if len(index.shape) == 0:
+ index = np.asarray([index])
+ assert len(index.shape) == 1
+ num = index.shape[0]
+ output = np.zeros((num, vocab_size), dtype=np.float32)
+ output[np.arange(num), index] = 1
+ return output
+
+def imconvert_uint8(im):
+ im = np.clip(((im + 1) / 2.0) * 256, 0, 255)
+ im = np.uint8(im)
+ return im
+
+def imconvert_float32(im):
+ im = np.float32(im)
+ im = (im / 256) * 2.0 - 1
+ return im
+
+def imread(filename):
+ img = cv2.imread(filename, cv2.IMREAD_UNCHANGED)
+ if img is not None:
+ if len(img.shape) > 2:
+ img = img[...,::-1]
+ return img
+
+def imwrite(filename, img):
+ if img is not None:
+ if len(img.shape) > 2:
+ img = img[...,::-1]
+ return cv2.imwrite(filename, img)
+
+def imgrid(imarray, cols=5, pad=1):
+ if imarray.dtype != np.uint8:
+ raise ValueError('imgrid input imarray must be uint8')
+ pad = int(pad)
+ assert pad >= 0
+ cols = int(cols)
+ assert cols >= 1
+ N, H, W, C = imarray.shape
+ rows = int(np.ceil(N / float(cols)))
+ batch_pad = rows * cols - N
+ assert batch_pad >= 0
+ post_pad = [batch_pad, pad, pad, 0]
+ pad_arg = [[0, p] for p in post_pad]
+ imarray = np.pad(imarray, pad_arg, 'constant', constant_values=255)
+ H += pad
+ W += pad
+ grid = (imarray
+ .reshape(rows, cols, H, W, C)
+ .transpose(0, 2, 1, 3, 4)
+ .reshape(rows*H, cols*W, C))
+ if pad:
+ grid = grid[:-pad, :-pad]
+ return grid
+
+def imshow(a, format='png', jpeg_fallback=True):
+ a = np.asarray(a, dtype=np.uint8)
+ str_file = cStringIO.StringIO()
+ PIL.Image.fromarray(a).save(str_file, format)
+ im_data = str_file.getvalue()
+ try:
+ disp = IPython.display.display(IPython.display.Image(im_data))
+ except IOError:
+ if jpeg_fallback and format != 'jpeg':
+ print ('Warning: image was too large to display in format "{}"; '
+ 'trying jpeg instead.').format(format)
+ return imshow(a, format='jpeg')
+ else:
+ raise
+ return disp