summaryrefslogtreecommitdiff
path: root/cli/app/search
diff options
context:
space:
mode:
Diffstat (limited to 'cli/app/search')
-rw-r--r--cli/app/search/search_dense.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py
index 1065edb..a296264 100644
--- a/cli/app/search/search_dense.py
+++ b/cli/app/search/search_dense.py
@@ -43,7 +43,7 @@ feature_layer_names = {
'7c': "InceptionV3/Mixed_7c",
}
-def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), opt_feature_layers=["1a,2a,3a,4a,7a"], opt_save_progress=True):
+def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), opt_feature_layers=["1a,2a,4a,7a"], opt_save_progress=True):
# --------------------------
# Global directories.
# --------------------------
@@ -188,12 +188,12 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
height, width = hub.get_expected_image_size(feature_extractor)
img_w = IMG_SHAPE[0]
- feat_loss, img_feat_err = feature_loss(feature_extractor, gen_img_ch, target_img_ch, None, None, height, width)
+ feat_loss, img_feat_err = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, None, None, height, width)
- feat_loss_a, feat_err_a = feature_loss(feature_extractor, gen_img_ch, target_img_ch, 0, 0, height, width)
- feat_loss_b, feat_err_b = feature_loss(feature_extractor, gen_img_ch, target_img_ch, img_w - width, 0, height, width)
- feat_loss_c, feat_err_c = feature_loss(feature_extractor, gen_img_ch, target_img_ch, 0, img_w - width, height, width)
- feat_loss_d, feat_err_d = feature_loss(feature_extractor, gen_img_ch, target_img_ch, img_w - width, img_w - width, height, width)
+ feat_loss_a, feat_err_a = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, 0, 0, height, width)
+ feat_loss_b, feat_err_b = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, img_w - width, 0, height, width)
+ feat_loss_c, feat_err_c = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, 0, img_w - width, height, width)
+ feat_loss_d, feat_err_d = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, img_w - width, img_w - width, height, width)
feat_loss_quad = feat_loss_a + feat_loss_b + feat_loss_c + feat_loss_d
img_feat_err_quad = feat_err_a + feat_err_b + feat_err_c + feat_err_d
@@ -400,7 +400,7 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
out_file.close()
sess.close()
-def feature_loss(feature_extractor, img_a, img_b, y, x, height, width):
+def feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, img_a, img_b, y, x, height, width):
if y is not None:
img_a = tf.image.crop_to_bounding_box(img_a, y, x, height, width)
img_b = tf.image.crop_to_bounding_box(img_b, y, x, height, width)