summaryrefslogtreecommitdiff
path: root/cli/app/search
diff options
context:
space:
mode:
Diffstat (limited to 'cli/app/search')
-rw-r--r--cli/app/search/json.py4
-rw-r--r--cli/app/search/search_dense.py8
2 files changed, 7 insertions, 5 deletions
diff --git a/cli/app/search/json.py b/cli/app/search/json.py
index ea70fd6..c50d716 100644
--- a/cli/app/search/json.py
+++ b/cli/app/search/json.py
@@ -16,7 +16,7 @@ def make_params_latent(tag):
"out_dataset": os.path.join(app_cfg.DIR_INVERSES, tag, "dataset.latent.hdf5"),
"inv_layer": "latent",
"decay_lr": True,
- "inv_it": 15000,
+ "inv_it": 5000,
"generator_path": "https://tfhub.dev/deepmind/biggan-512/2",
"attention_map_layer": "Generator_2/attention/Softmax:0",
"pre_trained_latent": False,
@@ -68,7 +68,7 @@ def make_params_dense(tag, folder_id):
"dataset": os.path.join(app_cfg.DIR_INVERSES, tag, "dataset.latent.hdf5"),
"inv_layer": "Generator_2/G_Z/Reshape:0",
"decay_lr": False,
- "inv_it": 15000,
+ "inv_it": 5000,
"generator_path": "https://tfhub.dev/deepmind/biggan-512/2",
"attention_map_layer": "Generator_2/attention/Softmax:0",
"pre_trained_latent": True,
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py
index 6fba70d..066d946 100644
--- a/cli/app/search/search_dense.py
+++ b/cli/app/search/search_dense.py
@@ -327,20 +327,20 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
sample_labels = in_file['ytrain'][()]
sample_fns = in_file['fn'][()]
NUM_IMGS = sample_images.shape[0] # number of images to be inverted.
+ INFILL_IMGS = NUM_IMGS
print("Number of images: {}".format(NUM_IMGS))
print("Batch size: {}".format(BATCH_SIZE))
def sample_images_gen():
- for i in range(int(NUM_IMGS / BATCH_SIZE)):
+ for i in range(int(INFILL_IMGS / BATCH_SIZE)):
i_1, i_2 = i*BATCH_SIZE, (i+1)*BATCH_SIZE
yield sample_images[i_1:i_2], sample_labels[i_1:i_2]
image_gen = sample_images_gen()
sample_latents = in_file['latent']
def sample_latent_gen():
- for i in range(int(NUM_IMGS / BATCH_SIZE)):
+ for i in range(int(INFILL_IMGS / BATCH_SIZE)):
i_1, i_2 = i*BATCH_SIZE, (i+1)*BATCH_SIZE
yield sample_latents[i_1:i_2]
latent_gen = sample_latent_gen()
- INFILL_IMGS = NUM_IMGS
while INFILL_IMGS % BATCH_SIZE != 0:
REMAINDER = 1 # BATCH_SIZE - (NUM_IMGS % BATCH_SIZE)
INFILL_IMGS += REMAINDER
@@ -444,7 +444,9 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
for i in range(BATCH_SIZE):
out_i = out_pos + i
if out_i >= NUM_IMGS:
+ print("{} >= {}, skipping...".format(out_i, NUM_IMGS))
continue
+ print("{}: {}".format(out_i, sample_fn))
sample_fn, ext = os.path.splitext(sample_fns[out_i])
image = Image.fromarray(images[i])
fp = BytesIO()