summaryrefslogtreecommitdiff
path: root/cli/app/search/search_dense.py
diff options
context:
space:
mode:
Diffstat (limited to 'cli/app/search/search_dense.py')
-rw-r--r--cli/app/search/search_dense.py9
1 files changed, 5 insertions, 4 deletions
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py
index ac4dc59..46183c7 100644
--- a/cli/app/search/search_dense.py
+++ b/cli/app/search/search_dense.py
@@ -124,6 +124,8 @@ def find_dense_embedding_for_images(params):
else:
gen_img = generator(latent, signature=gen_signature)
+ gen_img_orig = gen_img
+
# Convert generated image to channels_first.
gen_img = tf.transpose(gen_img, [0, 3, 1, 2])
@@ -393,7 +395,7 @@ def find_dense_embedding_for_images(params):
])
# Main optimization loop.
- print("Total iterations: {}".format(params.inv_it))
+ print("Beginning dense iteration...")
for _ in range(params.inv_it):
_inv_loss, _mse_loss, _feat_loss,\
@@ -435,15 +437,14 @@ def find_dense_embedding_for_images(params):
out_labels[out_pos:out_pos+BATCH_SIZE] = label_batch
out_err[out_pos:out_pos+BATCH_SIZE] = rec_err_batch
- gen_images = sess.run(gen_img)
+ gen_images = sess.run(gen_img_orig)
images = vs.data2img(gen_images)
# write encoding, latent to pkl file
for i in range(BATCH_SIZE):
out_i = out_pos + i
sample_fn, ext = os.path.splitext(sample_fns[out_i])
- image = Image.fromarray(images[i])
- image = vs.grid_transform(image)
+ image = Image.fromarray(image)
fp = BytesIO()
image.save(fp, format='png')
data = upload_bytes_to_cortex(params.folder_id, sample_fn + "-inverse.png", fp, "image/png")