diff options
Diffstat (limited to 'cli/app/commands/process/random.py')
| -rw-r--r-- | cli/app/commands/process/random.py | 91 |
1 files changed, 0 insertions, 91 deletions
diff --git a/cli/app/commands/process/random.py b/cli/app/commands/process/random.py deleted file mode 100644 index a1e5aff..0000000 --- a/cli/app/commands/process/random.py +++ /dev/null @@ -1,91 +0,0 @@ -import click - -from app.utils import click_utils -from app.settings import app_cfg - -from os.path import join -import time -import numpy as np - -from PIL import Image - -def image_to_uint8(x): - """Converts [-1, 1] float array to [0, 255] uint8.""" - x = np.asarray(x) - x = (256. / 2.) * (x + 1.) - x = np.clip(x, 0, 255) - x = x.astype(np.uint8) - return x - -@click.command('') -# @click.option('-i', '--input', 'opt_dir_in', required=True, -# help='Path to input image glob directory') -# @click.option('-r', '--recursive', 'opt_recursive', is_flag=True) -@click.pass_context -def cli(ctx): - """ - """ - print("Loading Tensorflow....") - import tensorflow as tf - import tensorflow_hub as hub - - #tf.compat.v1.disable_eager_execution() - #g = tf.compat.v1.get_default_graph() - - # Sample a batch of 8 random latent vectors (z) from the Gaussian prior. Then - # call the generator on the latent samples to generate a batch of images with - # shape [8, 128, 128, 3] and range [-1, 1]. - #recons = module(z, signature='generate', as_dict=True)['upsampled'] - - #info = module.get_input_info_dict('encode')['x'] - #enc_ph = tf.placeholder(dtype=info.dtype, shape=info.get_shape()) - - #z = bigbigan.encode(enc_ph, return_all_features=True)['z_mean'] - #recons = bigbigan.generate(z, upsample=True) - #recons = outputs['upsampled'] - - #if return_all_features else outputs['z_sample'] - - #fp_img_out = "{}.png".format(int(time.time() * 1000)) - print("Loading module...") - module = hub.Module('https://tfhub.dev/deepmind/bigbigan-resnet50/1') - z = tf.random.normal([8, 120]) # latent samples - outputs = module(z, signature='generate', as_dict=True) - - with tf.Session() as sess: - sess.run(tf.compat.v1.global_variables_initializer()) - sess.run(tf.compat.v1.tables_initializer()) - results = sess.run(outputs) - - for sample in results['upsampled']: - sample = image_to_uint8(sample) - img = Image.fromarray(sample, "RGB") - fp_img_out = "{}.png".format(int(time.time() * 1000)) - img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out)) - #print(result) - - #tf.keras.preprocessing.image.save_img( - # join(app_cfg.DIR_OUTPUTS, fp_img_out), - # gen_samples, - #) - #with tf.Session() as sess: - # gen_samples = gen_samples.eval() - # print(gen_samples) - - # # Given a batch of 256x256 RGB images in range [-1, 1], call the encoder to - # # compute predicted latents z and other features (e.g. for use in downstream - # # recognition tasks). - # images = tf.placeholder(tf.float32, shape=[None, 256, 256, 3]) - # features = module(images, signature='encode', as_dict=True) - - # # Get the predicted latent sample `z_sample` from the dict of features. - # # Other available features include `avepool_feat` and `bn_crelu_feat`, used in - # # the representation learning results. - # z_sample = features['z_sample'] # shape [?, 120] - - # # Compute reconstructions of the input `images` by passing the encoder's output - # # `z_sample` back through the generator. Note that raw generator outputs are - # # half the resolution of encoder inputs (128x128). To get upsampled generator - # # outputs matching the encoder input resolution (256x256), instead use: - # # recons = module(z_sample, signature='generate', as_dict=True)['upsampled'] - # recons = module(z_sample, signature='generate') # shape [?, 128, 128, 3] |
