summaryrefslogtreecommitdiff
path: root/cli/app/commands/process/random.py
diff options
context:
space:
mode:
Diffstat (limited to 'cli/app/commands/process/random.py')
-rw-r--r--cli/app/commands/process/random.py91
1 files changed, 0 insertions, 91 deletions
diff --git a/cli/app/commands/process/random.py b/cli/app/commands/process/random.py
deleted file mode 100644
index a1e5aff..0000000
--- a/cli/app/commands/process/random.py
+++ /dev/null
@@ -1,91 +0,0 @@
-import click
-
-from app.utils import click_utils
-from app.settings import app_cfg
-
-from os.path import join
-import time
-import numpy as np
-
-from PIL import Image
-
-def image_to_uint8(x):
- """Converts [-1, 1] float array to [0, 255] uint8."""
- x = np.asarray(x)
- x = (256. / 2.) * (x + 1.)
- x = np.clip(x, 0, 255)
- x = x.astype(np.uint8)
- return x
-
-@click.command('')
-# @click.option('-i', '--input', 'opt_dir_in', required=True,
-# help='Path to input image glob directory')
-# @click.option('-r', '--recursive', 'opt_recursive', is_flag=True)
-@click.pass_context
-def cli(ctx):
- """
- """
- print("Loading Tensorflow....")
- import tensorflow as tf
- import tensorflow_hub as hub
-
- #tf.compat.v1.disable_eager_execution()
- #g = tf.compat.v1.get_default_graph()
-
- # Sample a batch of 8 random latent vectors (z) from the Gaussian prior. Then
- # call the generator on the latent samples to generate a batch of images with
- # shape [8, 128, 128, 3] and range [-1, 1].
- #recons = module(z, signature='generate', as_dict=True)['upsampled']
-
- #info = module.get_input_info_dict('encode')['x']
- #enc_ph = tf.placeholder(dtype=info.dtype, shape=info.get_shape())
-
- #z = bigbigan.encode(enc_ph, return_all_features=True)['z_mean']
- #recons = bigbigan.generate(z, upsample=True)
- #recons = outputs['upsampled']
-
- #if return_all_features else outputs['z_sample']
-
- #fp_img_out = "{}.png".format(int(time.time() * 1000))
- print("Loading module...")
- module = hub.Module('https://tfhub.dev/deepmind/bigbigan-resnet50/1')
- z = tf.random.normal([8, 120]) # latent samples
- outputs = module(z, signature='generate', as_dict=True)
-
- with tf.Session() as sess:
- sess.run(tf.compat.v1.global_variables_initializer())
- sess.run(tf.compat.v1.tables_initializer())
- results = sess.run(outputs)
-
- for sample in results['upsampled']:
- sample = image_to_uint8(sample)
- img = Image.fromarray(sample, "RGB")
- fp_img_out = "{}.png".format(int(time.time() * 1000))
- img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out))
- #print(result)
-
- #tf.keras.preprocessing.image.save_img(
- # join(app_cfg.DIR_OUTPUTS, fp_img_out),
- # gen_samples,
- #)
- #with tf.Session() as sess:
- # gen_samples = gen_samples.eval()
- # print(gen_samples)
-
- # # Given a batch of 256x256 RGB images in range [-1, 1], call the encoder to
- # # compute predicted latents z and other features (e.g. for use in downstream
- # # recognition tasks).
- # images = tf.placeholder(tf.float32, shape=[None, 256, 256, 3])
- # features = module(images, signature='encode', as_dict=True)
-
- # # Get the predicted latent sample `z_sample` from the dict of features.
- # # Other available features include `avepool_feat` and `bn_crelu_feat`, used in
- # # the representation learning results.
- # z_sample = features['z_sample'] # shape [?, 120]
-
- # # Compute reconstructions of the input `images` by passing the encoder's output
- # # `z_sample` back through the generator. Note that raw generator outputs are
- # # half the resolution of encoder inputs (128x128). To get upsampled generator
- # # outputs matching the encoder input resolution (256x256), instead use:
- # # recons = module(z_sample, signature='generate', as_dict=True)['upsampled']
- # recons = module(z_sample, signature='generate') # shape [?, 128, 128, 3]