summaryrefslogtreecommitdiff
path: root/cli/app/commands/process/random.py
diff options
context:
space:
mode:
Diffstat (limited to 'cli/app/commands/process/random.py')
-rw-r--r--cli/app/commands/process/random.py48
1 files changed, 43 insertions, 5 deletions
diff --git a/cli/app/commands/process/random.py b/cli/app/commands/process/random.py
index 994afce..a1e5aff 100644
--- a/cli/app/commands/process/random.py
+++ b/cli/app/commands/process/random.py
@@ -5,9 +5,18 @@ from app.settings import app_cfg
from os.path import join
import time
+import numpy as np
from PIL import Image
+def image_to_uint8(x):
+ """Converts [-1, 1] float array to [0, 255] uint8."""
+ x = np.asarray(x)
+ x = (256. / 2.) * (x + 1.)
+ x = np.clip(x, 0, 255)
+ x = x.astype(np.uint8)
+ return x
+
@click.command('')
# @click.option('-i', '--input', 'opt_dir_in', required=True,
# help='Path to input image glob directory')
@@ -20,20 +29,49 @@ def cli(ctx):
import tensorflow as tf
import tensorflow_hub as hub
- module = hub.Module('https://tfhub.dev/deepmind/bigbigan-resnet50/1')
+ #tf.compat.v1.disable_eager_execution()
+ #g = tf.compat.v1.get_default_graph()
# Sample a batch of 8 random latent vectors (z) from the Gaussian prior. Then
# call the generator on the latent samples to generate a batch of images with
# shape [8, 128, 128, 3] and range [-1, 1].
+ #recons = module(z, signature='generate', as_dict=True)['upsampled']
+
+ #info = module.get_input_info_dict('encode')['x']
+ #enc_ph = tf.placeholder(dtype=info.dtype, shape=info.get_shape())
+
+ #z = bigbigan.encode(enc_ph, return_all_features=True)['z_mean']
+ #recons = bigbigan.generate(z, upsample=True)
+ #recons = outputs['upsampled']
+
+ #if return_all_features else outputs['z_sample']
+
+ #fp_img_out = "{}.png".format(int(time.time() * 1000))
+ print("Loading module...")
+ module = hub.Module('https://tfhub.dev/deepmind/bigbigan-resnet50/1')
z = tf.random.normal([8, 120]) # latent samples
- gen_samples = module(z, signature='generate', as_dict=True)['upsampled']
+ outputs = module(z, signature='generate', as_dict=True)
- print(gen_samples)
+ with tf.Session() as sess:
+ sess.run(tf.compat.v1.global_variables_initializer())
+ sess.run(tf.compat.v1.tables_initializer())
+ results = sess.run(outputs)
- for sample in gen_samples:
+ for sample in results['upsampled']:
+ sample = image_to_uint8(sample)
img = Image.fromarray(sample, "RGB")
- fp_img_out = int(time.time() * 1000) + '.png'
+ fp_img_out = "{}.png".format(int(time.time() * 1000))
img.save(join(app_cfg.DIR_OUTPUTS, fp_img_out))
+ #print(result)
+
+ #tf.keras.preprocessing.image.save_img(
+ # join(app_cfg.DIR_OUTPUTS, fp_img_out),
+ # gen_samples,
+ #)
+ #with tf.Session() as sess:
+ # gen_samples = gen_samples.eval()
+ # print(gen_samples)
+
# # Given a batch of 256x256 RGB images in range [-1, 1], call the encoder to
# # compute predicted latents z and other features (e.g. for use in downstream
# # recognition tasks).