diff options
Diffstat (limited to 'cli/app/commands/biggan/search_class.py')
| -rw-r--r-- | cli/app/commands/biggan/search_class.py | 22 |
1 files changed, 19 insertions, 3 deletions
diff --git a/cli/app/commands/biggan/search_class.py b/cli/app/commands/biggan/search_class.py index 311dc70..fc27935 100644 --- a/cli/app/commands/biggan/search_class.py +++ b/cli/app/commands/biggan/search_class.py @@ -13,11 +13,24 @@ from app.search.search_class import find_nearest_vector_for_images help='Limit the number of images to process') @click.option('-v', '--video', 'opt_video', is_flag=True, help='Export a video for each dataset') +@click.option('-d', '--dims', 'opt_dims', default=512, type=int, + help='Dimensions of BigGAN network (128, 256, 512)') @click.option('-t', '--tag', 'opt_tag', default='inverse_' + str(int(time.time() * 1000)), help='Tag this dataset') -# @click.option('-r', '--recursive', 'opt_recursive', is_flag=True) +@click.option('-sc', '--stochastic_clipping', 'opt_stochastic_clipping', default=0 + help='Compute feature loss') +@click.option('-lc', '--label_clipping', 'opt_label_clipping', default=0, + help='Normalize labels every N steps') +@click.option('-feat', '--use_feature_detector', 'opt_use_feature_detector', is_flag=True, + help='Compute feature loss') +@click.option('-ll', '--feature_layers', 'opt_feature_layers', default="1a,2a,4a,7a" + help='Feature layers used for loss') +@click.option('-snap', '--snapshot_interval', 'opt_snapshot_interval', default=20 + help='Interval to store sample images') + @click.pass_context -def cli(ctx, opt_fp_in, opt_dims, opt_steps, opt_limit, opt_video, opt_tag): +def cli(ctx, opt_fp_in, opt_dims, opt_steps, opt_video, opt_tag, + opt_stochastic_clipping, opt_label_clipping, opt_use_feature_detector, opt_feature_layers, opt_snapshot_interval): """ Search for an image (class vector) in BigGAN using gradient descent """ @@ -28,4 +41,7 @@ def cli(ctx, opt_fp_in, opt_dims, opt_steps, opt_limit, opt_video, opt_tag): else: paths = [opt_fp_in] - find_nearest_vector_for_images(paths, opt_dims, opt_steps, opt_video, opt_tag, opt_limit) + opt_feature_layers = opt_feature_layers.split(',') + + find_nearest_vector_for_images(paths, opt_dims, opt_steps, opt_video, opt_tag, opt_limit, + opt_stochastic_clipping, opt_label_clipping, opt_use_feature_detector, opt_feature_layers) |
