diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2019-12-11 10:26:48 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2019-12-11 10:26:48 +0100 |
| commit | 5edd80d1ac7673f31e503226529b0a826f907944 (patch) | |
| tree | 645a5d11c746351a63f6671c0c135f02b734223b /inversion/image_inversion.py | |
| parent | 7aad285136f97d737ef251ae35ed77404a847bb7 (diff) | |
paths
Diffstat (limited to 'inversion/image_inversion.py')
| -rw-r--r-- | inversion/image_inversion.py | 15 |
1 files changed, 8 insertions, 7 deletions
diff --git a/inversion/image_inversion.py b/inversion/image_inversion.py index 5556778..2927eac 100644 --- a/inversion/image_inversion.py +++ b/inversion/image_inversion.py @@ -68,11 +68,12 @@ params = params.Params(sys.argv[1]) # -------------------------- # Global directories. # -------------------------- +LATENT_TAG = 'latent_' if params.inv_layer == 'latent' else 'dense_' BATCH_SIZE = params.batch_size SAMPLE_SIZE = params.sample_size -LOGS_DIR = 'logs' -SAMPLES_DIR = 'samples' -INVERSES_DIR = 'inverses' +LOGS_DIR = os.path.join('inverses', params.tag, LATENT_TAG, 'logs') +SAMPLES_DIR = os.path.join('inverses', params.tag, LATENT_TAG, 'samples') +INVERSES_DIR = os.path.join('inverses', params.tag) if not os.path.exists(LOGS_DIR): os.makedirs(LOGS_DIR) if not os.path.exists(SAMPLES_DIR): @@ -394,7 +395,7 @@ for image_batch, label_batch in image_gen: sess.run(clip_latent) # Every 100 iterations save logs with training information. - if it % 100 == 99: + if it < 100 or it % 100 == 0: # Log losses. etime = time.time() - start_time print('It [{:8d}] time [{:5.1f}] total [{:.4f}] mse [{:.4f}] ' @@ -436,7 +437,7 @@ for image_batch, label_batch in image_gen: inv_batch = vs.interleave(vs.data2img(image_batch[BATCH_SIZE - SAMPLE_SIZE:]), vs.data2img(gen_images[BATCH_SIZE - SAMPLE_SIZE:])) inv_batch = vs.grid_transform(inv_batch) - vs.save_image('{}/progress_{}.png'.format(SAMPLES_DIR, it), inv_batch) + vs.save_image('{}/progress_{}_{}.png'.format(SAMPLES_DIR, params.tag, it), inv_batch) # Save linear interpolation between the actual and generated encodings. if params.dist_loss and it % 1000 == 999: @@ -448,7 +449,7 @@ for image_batch, label_batch in image_gen: inv_batch = vs.interleave(vs.data2img(image_batch[BATCH_SIZE - SAMPLE_SIZE:]), vs.data2img(gen_images[BATCH_SIZE - SAMPLE_SIZE:])) inv_batch = vs.grid_transform(inv_batch) - vs.save_image('{}/progress_{}_lat_{}.png'.format(SAMPLES_DIR,it,j), + vs.save_image('{}/progress_{}_{}_lat_{}.png'.format(SAMPLES_DIR,params.tag,it,j), inv_batch) sess.run(encoding.assign(enc_batch)) @@ -462,7 +463,7 @@ for image_batch, label_batch in image_gen: inv_batch = vs.interleave(vs.data2img(image_batch[BATCH_SIZE - SAMPLE_SIZE:]), vs.data2img(gen_images[BATCH_SIZE - SAMPLE_SIZE:])) inv_batch = vs.grid_transform(inv_batch) - vs.save_image('{}/{}.png'.format(SAMPLES_DIR, out_pos), inv_batch) + vs.save_image('{}/{}_{}.png'.format(SAMPLES_DIR, params.tag, out_pos), inv_batch) print('Saved samples for out_pos: {}.'.format(out_pos)) # Save images that are ready. |
