summaryrefslogtreecommitdiff
path: root/inversion/image_inversion.py
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2019-12-11 11:03:14 +0100
committerJules Laplace <julescarbon@gmail.com>2019-12-11 11:03:14 +0100
commit46725f867946386bb05e744baa80f493c9ad0b02 (patch)
treee09aef802f999baccafe6beaead852e88750e3bd /inversion/image_inversion.py
parent736e2d0b2e0ae23ecca4ae2457cb002395db75e5 (diff)
fix image
Diffstat (limited to 'inversion/image_inversion.py')
-rw-r--r--inversion/image_inversion.py7
1 files changed, 4 insertions, 3 deletions
diff --git a/inversion/image_inversion.py b/inversion/image_inversion.py
index 591f4f7..09dd4e7 100644
--- a/inversion/image_inversion.py
+++ b/inversion/image_inversion.py
@@ -150,9 +150,10 @@ inv_step = tf.get_variable('inv_step', initializer=0, trainable=False)
# Define target image.
IMG_SHAPE = gen_img.get_shape().as_list()[1:]
-target = tf.get_variable(name='target', dtype=tf.int32,
+target = tf.get_variable(name='target', dtype=tf.float32, # normally this is the real [0-255]image
shape=[BATCH_SIZE,] + IMG_SHAPE)
-target_img = (tf.cast(target, tf.float32) / 255.) * 2.0 - 1. # Norm to [-1, 1].
+# target_img = (tf.cast(target, tf.float32) / 255.) * 2.0 - 1. # Norm to [-1, 1].
+target_img = target
# Custom Gradient for Relus.
if params.custom_grad_relu:
@@ -282,7 +283,7 @@ if params.decay_lr:
params.inv_it / params.decay_n, 0.1, staircase=True)
else:
lrate = tf.constant(params.lr)
-trained_params = [encoding] if params.fixed_z else [latent]
+trained_params = [encoding] if params.fixed_z else [latent, encoding]
optimizer = tf.train.AdamOptimizer(learning_rate=lrate, beta1=0.9, beta2=0.999)
inv_train_op = optimizer.minimize(inv_loss, var_list=trained_params,
global_step=inv_step)