diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2019-12-11 11:03:14 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2019-12-11 11:03:14 +0100 |
| commit | 46725f867946386bb05e744baa80f493c9ad0b02 (patch) | |
| tree | e09aef802f999baccafe6beaead852e88750e3bd /inversion/image_inversion.py | |
| parent | 736e2d0b2e0ae23ecca4ae2457cb002395db75e5 (diff) | |
fix image
Diffstat (limited to 'inversion/image_inversion.py')
| -rw-r--r-- | inversion/image_inversion.py | 7 |
1 files changed, 4 insertions, 3 deletions
diff --git a/inversion/image_inversion.py b/inversion/image_inversion.py index 591f4f7..09dd4e7 100644 --- a/inversion/image_inversion.py +++ b/inversion/image_inversion.py @@ -150,9 +150,10 @@ inv_step = tf.get_variable('inv_step', initializer=0, trainable=False) # Define target image. IMG_SHAPE = gen_img.get_shape().as_list()[1:] -target = tf.get_variable(name='target', dtype=tf.int32, +target = tf.get_variable(name='target', dtype=tf.float32, # normally this is the real [0-255]image shape=[BATCH_SIZE,] + IMG_SHAPE) -target_img = (tf.cast(target, tf.float32) / 255.) * 2.0 - 1. # Norm to [-1, 1]. +# target_img = (tf.cast(target, tf.float32) / 255.) * 2.0 - 1. # Norm to [-1, 1]. +target_img = target # Custom Gradient for Relus. if params.custom_grad_relu: @@ -282,7 +283,7 @@ if params.decay_lr: params.inv_it / params.decay_n, 0.1, staircase=True) else: lrate = tf.constant(params.lr) -trained_params = [encoding] if params.fixed_z else [latent] +trained_params = [encoding] if params.fixed_z else [latent, encoding] optimizer = tf.train.AdamOptimizer(learning_rate=lrate, beta1=0.9, beta2=0.999) inv_train_op = optimizer.minimize(inv_loss, var_list=trained_params, global_step=inv_step) |
