summaryrefslogtreecommitdiff
path: root/cli
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-02-10 19:13:34 +0100
committerJules Laplace <julescarbon@gmail.com>2020-02-10 19:13:34 +0100
commit83eed8438f978f9b75268dda890134885b07ef6d (patch)
tree908da467a2f768c45db78543cecad2a9dfdb1cfa /cli
parent422410e391f4ca7b339c84df2432ca7873f420f5 (diff)
feature loss on quadrants
Diffstat (limited to 'cli')
-rw-r--r--cli/app/commands/biggan/extract_dense_vectors.py2
-rw-r--r--cli/app/search/search_dense.py14
2 files changed, 8 insertions, 8 deletions
diff --git a/cli/app/commands/biggan/extract_dense_vectors.py b/cli/app/commands/biggan/extract_dense_vectors.py
index 54f9762..0f61528 100644
--- a/cli/app/commands/biggan/extract_dense_vectors.py
+++ b/cli/app/commands/biggan/extract_dense_vectors.py
@@ -24,7 +24,7 @@ from app.search.params import timestamp
help='Normalize labels every N steps')
@click.option('-feat', '--use_feature_detector', 'opt_use_feature_detector', is_flag=True,
help='Compute feature loss')
-@click.option('-ll', '--feature_layers', 'opt_feature_layers', default="1a,2a,3a,4a,7a",
+@click.option('-ll', '--feature_layers', 'opt_feature_layers', default="1a,2a,4a,7a",
help='Feature layers used for loss')
@click.option('-snap', '--snapshot_interval', 'opt_snapshot_interval', default=20,
help='Interval to store sample images')
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py
index 1065edb..a296264 100644
--- a/cli/app/search/search_dense.py
+++ b/cli/app/search/search_dense.py
@@ -43,7 +43,7 @@ feature_layer_names = {
'7c': "InceptionV3/Mixed_7c",
}
-def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), opt_feature_layers=["1a,2a,3a,4a,7a"], opt_save_progress=True):
+def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), opt_feature_layers=["1a,2a,4a,7a"], opt_save_progress=True):
# --------------------------
# Global directories.
# --------------------------
@@ -188,12 +188,12 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
height, width = hub.get_expected_image_size(feature_extractor)
img_w = IMG_SHAPE[0]
- feat_loss, img_feat_err = feature_loss(feature_extractor, gen_img_ch, target_img_ch, None, None, height, width)
+ feat_loss, img_feat_err = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, None, None, height, width)
- feat_loss_a, feat_err_a = feature_loss(feature_extractor, gen_img_ch, target_img_ch, 0, 0, height, width)
- feat_loss_b, feat_err_b = feature_loss(feature_extractor, gen_img_ch, target_img_ch, img_w - width, 0, height, width)
- feat_loss_c, feat_err_c = feature_loss(feature_extractor, gen_img_ch, target_img_ch, 0, img_w - width, height, width)
- feat_loss_d, feat_err_d = feature_loss(feature_extractor, gen_img_ch, target_img_ch, img_w - width, img_w - width, height, width)
+ feat_loss_a, feat_err_a = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, 0, 0, height, width)
+ feat_loss_b, feat_err_b = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, img_w - width, 0, height, width)
+ feat_loss_c, feat_err_c = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, 0, img_w - width, height, width)
+ feat_loss_d, feat_err_d = feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, img_w - width, img_w - width, height, width)
feat_loss_quad = feat_loss_a + feat_loss_b + feat_loss_c + feat_loss_d
img_feat_err_quad = feat_err_a + feat_err_b + feat_err_c + feat_err_d
@@ -400,7 +400,7 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
out_file.close()
sess.close()
-def feature_loss(feature_extractor, img_a, img_b, y, x, height, width):
+def feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, img_a, img_b, y, x, height, width):
if y is not None:
img_a = tf.image.crop_to_bounding_box(img_a, y, x, height, width)
img_b = tf.image.crop_to_bounding_box(img_b, y, x, height, width)