summaryrefslogtreecommitdiff
path: root/cli
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-02-10 20:49:37 +0100
committerJules Laplace <julescarbon@gmail.com>2020-02-10 20:49:37 +0100
commit3f3d06c40a7a517e49d00517c8eff737a3c8a4cd (patch)
tree0bc58971756eb9875868e9b5dc7c98e6873006af /cli
parent80976629b67e2a4d7388e9971068d2aeeba665e8 (diff)
what the...
Diffstat (limited to 'cli')
-rw-r--r--cli/app/commands/biggan/extract_dense_vectors.py4
-rw-r--r--cli/app/search/search_dense.py11
2 files changed, 7 insertions, 8 deletions
diff --git a/cli/app/commands/biggan/extract_dense_vectors.py b/cli/app/commands/biggan/extract_dense_vectors.py
index 05b2c23..018d646 100644
--- a/cli/app/commands/biggan/extract_dense_vectors.py
+++ b/cli/app/commands/biggan/extract_dense_vectors.py
@@ -10,7 +10,7 @@ from app.search.params import timestamp
@click.command('')
@click.option('-f', '--folder_id', 'opt_folder_id', type=int,
help='Folder ID to process')
-@click.option('-ls', '--latent_steps', 'opt_latent_steps', default=100, type=int,
+@click.option('-ls', '--latent_steps', 'opt_latent_steps', default=200, type=int,
help='Number of optimization iterations')
@click.option('-ds', '--dense_steps', 'opt_dense_steps', default=2000, type=int,
help='Number of optimization iterations')
@@ -24,7 +24,7 @@ from app.search.params import timestamp
help='Normalize labels every N steps')
@click.option('-feat', '--use_feature_detector', 'opt_use_feature_detector', is_flag=True,
help='Compute feature loss')
-@click.option('-ll', '--feature_layers', 'opt_feature_layers', default="1a,2a,4a,7a",
+@click.option('-ll', '--feature_layers', 'opt_feature_layers', default="1a,2a,3a,4a,7a",
help='Feature layers used for loss')
@click.option('-snap', '--snapshot_interval', 'opt_snapshot_interval', default=20,
help='Interval to store sample images')
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py
index 5c07be1..dcef82f 100644
--- a/cli/app/search/search_dense.py
+++ b/cli/app/search/search_dense.py
@@ -212,20 +212,20 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
# Optimizer.
# --------------------------
if params.decay_lr:
- lrate = tf.train.exponential_decay(params.lr, inv_step,
- params.inv_it / params.decay_n, 0.1, staircase=True)
+ lrate = tf.train.exponential_decay(params.lr, inv_step, params.inv_it, 0.96)
+ # lrate = tf.train.exponential_decay(params.lr, inv_step, params.inv_it / params.decay_n, 0.1, staircase=True)
else:
lrate = tf.constant(params.lr)
- # trained_params = [label, latent, encoding]
- trained_params = [latent, encoding]
+ trained_params = [label, latent, encoding]
+ # trained_params = [latent, encoding]
optimizer = tf.train.AdamOptimizer(learning_rate=lrate, beta1=0.9, beta2=0.999)
inv_train_op = optimizer.minimize(inv_loss, var_list=trained_params,
global_step=inv_step)
reinit_optimizer = tf.variables_initializer(optimizer.variables())
- optimizer_quad = tf.train.AdamOptimizer(learning_rate=params.lr_quad, beta1=0.9, beta2=0.999)
+ optimizer_quad = tf.train.AdamOptimizer(learning_rate=lrate, beta1=0.9, beta2=0.999)
inv_train_op_quad = optimizer_quad.minimize(inv_loss_quad, var_list=trained_params, global_step=inv_step)
reinit_optimizer_quad = tf.variables_initializer(optimizer_quad.variables())
@@ -401,7 +401,6 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
sess.close()
def feature_loss(feature_extractor, opt_feature_layers, BATCH_SIZE, img_a, img_b, y, x, height, width):
- print("{} {} {} {}".format(y, x, height, width))
if y is not None:
img_a = tf.image.crop_to_bounding_box(img_a, y, x, height, width)
img_b = tf.image.crop_to_bounding_box(img_b, y, x, height, width)