summaryrefslogtreecommitdiff
path: root/cli
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-01-06 16:24:27 +0100
committerJules Laplace <julescarbon@gmail.com>2020-01-06 16:24:27 +0100
commit1084fad3e5fc2a2d70276fbe8cba5e6dfea10dff (patch)
tree4c9c708229638be5191078dd7731d5c2ea7facb8 /cli
parent87a89a18604199696599ee227a17d03fcafeec7b (diff)
sigmoid
Diffstat (limited to 'cli')
-rw-r--r--cli/app/commands/biggan/search_class.py7
1 files changed, 4 insertions, 3 deletions
diff --git a/cli/app/commands/biggan/search_class.py b/cli/app/commands/biggan/search_class.py
index 58f0d86..cbf39b2 100644
--- a/cli/app/commands/biggan/search_class.py
+++ b/cli/app/commands/biggan/search_class.py
@@ -31,7 +31,7 @@ from app.search.vector import truncated_z_sample, truncated_z_single, create_lab
help='Path to input image')
@click.option('-d', '--dims', 'opt_dims', default=512, type=int,
help='Dimensions of BigGAN network (128, 256, 512)')
-@click.option('-s', '--steps', 'opt_steps', default=5000, type=int,
+@click.option('-s', '--steps', 'opt_steps', default=2000, type=int,
help='Number of optimization iterations')
@click.option('-l', '--limit', 'opt_limit', default=1000, type=int,
help='Limit the number of images to process')
@@ -87,6 +87,7 @@ def find_nearest_vector(sess, opt_fp_in, opt_dims, out_images, out_labels, out_l
vocab_size = 1000
img_size = 512
num_channels = 3
+ save_step = 20
z_initial = truncated_z_sample(batch_size, z_dim, truncation/2)
y_initial = create_labels(batch_size, vocab_size, 10)
@@ -144,10 +145,10 @@ def find_nearest_vector(sess, opt_fp_in, opt_dims, out_images, out_labels, out_l
for i in range(opt_steps):
curr_loss, _, _ = sess.run([loss, train_step_z, train_step_y], feed_dict=feed_dict)
- if i % 20 == 0:
+ if i % save_step == 0:
phi_guess = sess.run(output)
guess_im = imgrid(imconvert_uint8(phi_guess), cols=1)
- imwrite(join(app_cfg.DIR_OUTPUTS, fp_frames, 'frame_{:04d}.png'.format(int(i / 20))), guess_im)
+ imwrite(join(app_cfg.DIR_OUTPUTS, fp_frames, 'frame_{:04d}.png'.format(int(i / save_step))), guess_im)
print('iter: {}, loss: {}'.format(i, curr_loss))
except KeyboardInterrupt:
pass