summaryrefslogtreecommitdiff
path: root/cli/app
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-02-18 18:39:45 +0100
committerJules Laplace <julescarbon@gmail.com>2020-02-18 18:39:45 +0100
commit840b5ea07cd6871ae0dd041da2aab906d5fff334 (patch)
tree08ca91bc6dd9bd2dc6051d12163de7fbfcfe4892 /cli/app
parent75fa7f62aa9dbbbe3d69d03ad243a63a4b17c192 (diff)
simple sum
Diffstat (limited to 'cli/app')
-rw-r--r--cli/app/search/search_dense.py8
1 files changed, 4 insertions, 4 deletions
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py
index f52954c..f0e0a68 100644
--- a/cli/app/search/search_dense.py
+++ b/cli/app/search/search_dense.py
@@ -302,7 +302,7 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
# img_rec_err = params.lambda_mse * img_mse_err + params.lambda_feat * img_feat_err
inv_loss = (params.lambda_mse * mse_loss + params.lambda_feat * feat_loss)
- inv_loss_quad = (params.lambda_mse * mse_loss_quad + params.lambda_feat * feat_loss_quad)
+ # inv_loss_quad = (params.lambda_mse * mse_loss_quad + params.lambda_feat * feat_loss_quad)
# inv_loss_quint = params.lambda_mse * mse_loss_quint + params.lambda_feat * feat_loss_quint
# --------------------------
@@ -328,9 +328,9 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
inv_train_op = optimizer.minimize(inv_loss, var_list=trained_params, global_step=inv_step)
reinit_optimizer = tf.variables_initializer(optimizer.variables())
- optimizer_quad = tf.train.AdamOptimizer(learning_rate=lrate, beta1=0.9, beta2=0.999)
- inv_train_op_quad = optimizer_quad.minimize(inv_loss_quad, var_list=trained_params, global_step=inv_step)
- reinit_optimizer_quad = tf.variables_initializer(optimizer_quad.variables())
+ # optimizer_quad = tf.train.AdamOptimizer(learning_rate=lrate, beta1=0.9, beta2=0.999)
+ # inv_train_op_quad = optimizer_quad.minimize(inv_loss_quad, var_list=trained_params, global_step=inv_step)
+ # reinit_optimizer_quad = tf.variables_initializer(optimizer_quad.variables())
# optimizer_quint = tf.train.AdamOptimizer(learning_rate=lrate, beta1=0.9, beta2=0.999)
# inv_train_op_quint = optimizer_quint.minimize(inv_loss_quint, var_list=trained_params, global_step=inv_step)