summaryrefslogtreecommitdiff
path: root/cli/app
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-01-08 18:40:07 +0100
committerJules Laplace <julescarbon@gmail.com>2020-01-08 18:40:07 +0100
commit76d4a9ed2e209cea7d3524e1b537faaabc4ca1c6 (patch)
treeb99e47edbfe150ac40c331596550947c0e79b836 /cli/app
parentdda7963dd3b31ec8baa0da67b2fc35fecfbbdd84 (diff)
dont clip so much - clip even less
Diffstat (limited to 'cli/app')
-rw-r--r--cli/app/search/search_class.py4
1 files changed, 2 insertions, 2 deletions
diff --git a/cli/app/search/search_class.py b/cli/app/search/search_class.py
index 0fcfdfd..8825ca5 100644
--- a/cli/app/search/search_class.py
+++ b/cli/app/search/search_class.py
@@ -105,7 +105,7 @@ def find_nearest_vector(sess, generator, opt_fp_in, opt_dims, out_images, out_la
clipped_latent = tf.where(tf.abs(input_z) >= opt_clip,
tf.random.uniform([batch_size, z_dim], minval=-opt_clip, maxval=opt_clip), input_z)
clipped_alpha = tf.compat.v1.placeholder(dtype=np.float32, shape=())
- clip_latent = tf.assign(input_z, clipped_latent * (1 - normalized_alpha) + input_z * normalized_alpha)
+ clip_latent = tf.assign(input_z, clipped_latent * (1 - clipped_alpha) + input_z * clipped_alpha)
## normalize the Y encoding
# normalized_labels = tf.nn.l2_normalize(input_y)
@@ -191,7 +191,7 @@ def find_nearest_vector(sess, generator, opt_fp_in, opt_dims, out_images, out_la
print('iter: {}, loss: {}'.format(i, curr_loss))
if i > 0:
if opt_stochastic_clipping and (i % opt_clip_interval) == 0 and i < opt_steps * 0.45:
- sess.run(clip_latent, { normalized_alpha: i / opt_steps })
+ sess.run(clip_latent, { clipped_alpha: i / opt_steps })
if opt_label_clipping and (i % opt_clip_interval) == 0:
sess.run(clip_labels, { normalized_alpha: i / opt_steps })
if opt_video and opt_snapshot_interval != 0 and (i % opt_snapshot_interval) == 0: