diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2020-01-08 10:55:52 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2020-01-08 10:55:52 +0100 |
| commit | 38307f80c20def125cf342c784d3aed3168cd839 (patch) | |
| tree | a463dd40bcdda739e8f0b5670aa711244e4bf597 /cli/app | |
| parent | 33a81c019dc39122189fb1dac6e9186ac08382d3 (diff) | |
reprocess
Diffstat (limited to 'cli/app')
| -rw-r--r-- | cli/app/commands/biggan/extract_dense_vectors.py | 4 | ||||
| -rw-r--r-- | cli/app/commands/biggan/search_class.py | 8 | ||||
| -rw-r--r-- | cli/app/search/search_class.py | 6 |
3 files changed, 9 insertions, 9 deletions
diff --git a/cli/app/commands/biggan/extract_dense_vectors.py b/cli/app/commands/biggan/extract_dense_vectors.py index 7fef459..45a13db 100644 --- a/cli/app/commands/biggan/extract_dense_vectors.py +++ b/cli/app/commands/biggan/extract_dense_vectors.py @@ -17,9 +17,9 @@ from app.search.json import params_dense_dict help='Export a video for each dataset') @click.option('-rp', '--reprocess', 'opt_reprocess', is_flag=True, help='Reprocess images') -@click.option('-sc', '--stochastic_clipping', 'opt_stochastic_clipping', default=0, +@click.option('-sc', '--stochastic_clipping', 'opt_stochastic_clipping', is_flag=True, help='Compute feature loss') -@click.option('-lc', '--label_clipping', 'opt_label_clipping', default=0, +@click.option('-lc', '--label_clipping', 'opt_label_clipping', is_flag=True, help='Normalize labels every N steps') @click.option('-feat', '--use_feature_detector', 'opt_use_feature_detector', is_flag=True, help='Compute feature loss') diff --git a/cli/app/commands/biggan/search_class.py b/cli/app/commands/biggan/search_class.py index 050fbef..7a7bfdb 100644 --- a/cli/app/commands/biggan/search_class.py +++ b/cli/app/commands/biggan/search_class.py @@ -19,10 +19,10 @@ from app.utils.cortex_utils import cortex_folder, download_cortex_files, find_un help='Export a video for each dataset') @click.option('-t', '--tag', 'opt_tag', default='inverse_' + str(int(time.time() * 1000)), help='Tag this dataset') -@click.option('-sc', '--stochastic_clipping', 'opt_stochastic_clipping', default=0, - help='Compute feature loss. Specify interval to do the clipping') -@click.option('-lc', '--label_clipping', 'opt_label_clipping', default=0, - help='Normalize labels every N steps. Specify interval to do the normalization') +@click.option('-sc', '--stochastic_clipping', 'opt_stochastic_clipping', is_flag=True, + help='Compute feature loss') +@click.option('-lc', '--label_clipping', 'opt_label_clipping', is_flag=True, + help='Normalize labels every N steps') @click.option('-feat', '--use_feature_detector', 'opt_use_feature_detector', is_flag=True, help='Compute feature loss') @click.option('-ll', '--feature_layers', 'opt_feature_layers', default="1a,2a,4a,7a", diff --git a/cli/app/search/search_class.py b/cli/app/search/search_class.py index 7961a0c..c732801 100644 --- a/cli/app/search/search_class.py +++ b/cli/app/search/search_class.py @@ -45,7 +45,7 @@ feature_layer_names = { } def find_nearest_vector_for_images(paths, opt_dims, opt_steps, opt_video, opt_tag, - opt_limit=-1, opt_stochastic_clipping=0, opt_label_clipping=0, + opt_limit=-1, opt_stochastic_clipping=True, opt_label_clipping=True, opt_use_feature_detector=False, opt_feature_layers=[1,2,4,7], opt_snapshot_interval=20, opt_clip_interval=500): tf.reset_default_graph() sess = tf.compat.v1.Session() @@ -186,9 +186,9 @@ def find_nearest_vector(sess, generator, opt_fp_in, opt_dims, out_images, out_la if i % 20 == 0: print('iter: {}, loss: {}'.format(i, curr_loss)) if i > 0: - if opt_stochastic_clipping != 0 and (i % opt_stochastic_clipping) == 0: + if opt_stochastic_clipping and (i % opt_clip_interval) == 0: sess.run(clip_latent) - if opt_label_clipping != 0 and (i % opt_label_clipping) == 0: + if opt_label_clipping and (i % opt_clip_interval) == 0: sess.run(clip_labels) if opt_video and opt_snapshot_interval != 0 and (i % opt_snapshot_interval) == 0: phi_guess = sess.run(output) |
