diff options
| author | Jules Laplace <julescarbon@gmail.com> | 2020-01-08 17:47:44 +0100 |
|---|---|---|
| committer | Jules Laplace <julescarbon@gmail.com> | 2020-01-08 17:47:44 +0100 |
| commit | 034922d32c1d9df996e6292a17fb4fb4cb04395d (patch) | |
| tree | 0e2454b07c59e7e58c50073afa00db384635e41d /cli/app | |
| parent | f9a008b225e9c67b2ccabccb1eee0c261c61c26d (diff) | |
fix dense
Diffstat (limited to 'cli/app')
| -rw-r--r-- | cli/app/search/search_dense.py | 64 |
1 files changed, 20 insertions, 44 deletions
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py index 46183c7..362e0ce 100644 --- a/cli/app/search/search_dense.py +++ b/cli/app/search/search_dense.py @@ -21,49 +21,25 @@ from app.settings import app_cfg from app.utils.file_utils import write_pickle from app.utils.cortex_utils import upload_bytes_to_cortex -# -------------------------- -# Hyper-parameters. -# -------------------------- -# Expected parameters: -# generator_path: path to generator module. -# generator_fixed_inputs: dictionary of fixed generator's input parameters. -# dataset: name of the dataset (hdf5 file). -# dataset_out: name for the output inverted dataset (hdf5 file). -# General parameters: -# batch_size: number of images inverted at the same time. -# inv_it: number of iterations to invert an image. -# inv_layer: 'latent' or name of the tensor of the custom layer to be inverted. -# lr: learning rate. -# decay_lr: exponential decay on the learning rate. -# decay_n: number of exponential decays on the learning rate. -# custom_grad_relu: replace relus with custom gradient. -# Logging: -# sample_size: number of images included in sampled images. -# save_progress: whether to save intermediate images during optimization. -# log_z_norm: log the norm of different sections of z. -# log_activation_layer: log the percentage of active neurons in this layer. -# Losses: -# mse: use the mean squared error on pixels for image comparison. -# features: use features extracted by a feature extractor for image comparison. -# feature_extractor_path: path to feature extractor module. -# feature_extractor_output: output name from feature extractor. -# likeli_loss: regularization loss on the log likelihood of encodings. -# norm_loss: regularization loss on the norm of encodings. -# dist_loss: whether to include a loss on the dist between g1(z) and enc. -# lambda_mse: coefficient for mse loss. -# lambda_feat: coefficient for features loss. -# lambda_reg: coefficient for regularization loss on latent. -# lambda_dist: coefficient for l1 regularization on delta. -# Latent: -# clipping: whether to clip encoding values after every update. -# stochastic_clipping: whether to consider stochastic clipping. -# clip: clipping bound. -# pretrained_latent: load pre trained fixed latent. -# fixed_z: do not train the latent vector. -# Initialization: -# init_gen_dist: initialize encodings from the generated distribution. -# init_lo: init min value. -# init_hi: init max value. +feature_layer_names = { + '1a': "InceptionV3/Conv2d_1a_3x3", + '2a': "InceptionV3/Conv2d_2a_3x3", + '2b': "InceptionV3/Conv2d_2b_3x3", + '3a': "InceptionV3/Conv2d_3a_3x3", + '3b': "InceptionV3/Conv2d_3b_3x3", + '4a': "InceptionV3/Conv2d_4a_3x3", + '5b': "InceptionV3/Mixed_5b", + '5c': "InceptionV3/Mixed_5c", + '5d': "InceptionV3/Mixed_5d", + '6a': "InceptionV3/Mixed_6a", + '6b': "InceptionV3/Mixed_6b", + '6c': "InceptionV3/Mixed_6c", + '6d': "InceptionV3/Mixed_6d", + '6e': "InceptionV3/Mixed_6e", + '7a': "InceptionV3/Mixed_7a", + '7b': "InceptionV3/Mixed_7b", + '7c': "InceptionV3/Mixed_7c", +} def find_dense_embedding_for_images(params): # -------------------------- @@ -444,7 +420,7 @@ def find_dense_embedding_for_images(params): for i in range(BATCH_SIZE): out_i = out_pos + i sample_fn, ext = os.path.splitext(sample_fns[out_i]) - image = Image.fromarray(image) + image = Image.fromarray(images[i]) fp = BytesIO() image.save(fp, format='png') data = upload_bytes_to_cortex(params.folder_id, sample_fn + "-inverse.png", fp, "image/png") |
