summaryrefslogtreecommitdiff
path: root/cli/app/search
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-02-18 19:37:22 +0100
committerJules Laplace <julescarbon@gmail.com>2020-02-18 19:37:22 +0100
commited1f9b0d15adc90d1ba4f477dc56656e1c87f01a (patch)
tree22d59d77ca25e70bddcd0225857d916d07678013 /cli/app/search
parent0a696fed6b5e9379fe15d3643fccb50ed27de88a (diff)
try intense rescaling, way more mse
Diffstat (limited to 'cli/app/search')
-rw-r--r--cli/app/search/search_dense.py6
1 files changed, 3 insertions, 3 deletions
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py
index a2bdad3..7e144c8 100644
--- a/cli/app/search/search_dense.py
+++ b/cli/app/search/search_dense.py
@@ -192,7 +192,7 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
# Mse loss for image comparison.
if params.mse:
pix_square_diff = tf.square((target_img - gen_img) / 2.0)
- mse_loss = tf.reduce_mean(pix_square_diff)
+ mse_loss = tf.reduce_mean(pix_square_diff) # , axis=1)
img_mse_err = tf.reduce_mean(pix_square_diff, axis=[1,2,3])
else:
mse_loss = tf.constant(0.0)
@@ -263,7 +263,7 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
feat_loss_vgg, img_feat_err_vgg = feature_loss_vgg(feature_extractor, opt_feature_layers, BATCH_SIZE, gen_img_ch, target_img_ch, None, None, height, width)
- feat_loss = feat_loss_vgg + feat_loss_inception
+ feat_loss = feat_loss_vgg + 10.0 * feat_loss_inception
# mse_loss_a = mse_loss_crop(target_img_ch, gen_img_ch, 0, 0, img_w / 2, img_w / 2)
# mse_loss_b = mse_loss_crop(target_img_ch, gen_img_ch, img_w / 2, 0, img_w / 2, img_w / 2)
@@ -301,7 +301,7 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
# img_feat_err_quint = tf.constant(0.0)
# img_rec_err = params.lambda_mse * img_mse_err + params.lambda_feat * img_feat_err
- inv_loss = (params.lambda_mse * mse_loss + params.lambda_feat * feat_loss)
+ inv_loss = 100.0 * mse_loss + feat_loss
# inv_loss_quad = (params.lambda_mse * mse_loss_quad + params.lambda_feat * feat_loss_quad)
# inv_loss_quint = params.lambda_mse * mse_loss_quint + params.lambda_feat * feat_loss_quint