summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-01-23 14:30:58 +0100
committerJules Laplace <julescarbon@gmail.com>2020-01-23 14:30:58 +0100
commit983127c4efc8b6d13df2df715cb3d1890bd6a088 (patch)
treea7d76ccc8d37bc1002f5c3f15a3f1188e559b2d6
parentb25a3e0141c943fd3645a494bf833fcc7ed5d400 (diff)
clipping again?
-rw-r--r--cli/app/commands/biggan/extract_dense_vectors.py2
-rw-r--r--cli/app/search/search_class.py8
2 files changed, 5 insertions, 5 deletions
diff --git a/cli/app/commands/biggan/extract_dense_vectors.py b/cli/app/commands/biggan/extract_dense_vectors.py
index 622a094..e8f0587 100644
--- a/cli/app/commands/biggan/extract_dense_vectors.py
+++ b/cli/app/commands/biggan/extract_dense_vectors.py
@@ -24,7 +24,7 @@ from app.search.params import timestamp
help='Normalize labels every N steps')
@click.option('-feat', '--use_feature_detector', 'opt_use_feature_detector', is_flag=True,
help='Compute feature loss')
-@click.option('-ll', '--feature_layers', 'opt_feature_layers', default="1a,3a,4a,7a",
+@click.option('-ll', '--feature_layers', 'opt_feature_layers', default="1a,2a,3a,4a,7a",
help='Feature layers used for loss')
@click.option('-snap', '--snapshot_interval', 'opt_snapshot_interval', default=20,
help='Interval to store sample images')
diff --git a/cli/app/search/search_class.py b/cli/app/search/search_class.py
index fb497f3..a98d7e3 100644
--- a/cli/app/search/search_class.py
+++ b/cli/app/search/search_class.py
@@ -200,12 +200,12 @@ def find_nearest_vector(sess, generator, opt_fp_in, opt_dims, out_images, out_la
if i % 20 == 0:
print('iter: {}, loss: {}'.format(i, curr_loss))
if i > 0:
- if opt_stochastic_clipping and (i % opt_clip_interval) == 0: # and i < opt_steps * 0.45:
- sess.run(clip_latent, { clipped_alpha: 0.0 })
+ if opt_stochastic_clipping and (i % opt_clip_interval) == 0 and i < opt_steps * 0.75:
+ sess.run(clip_latent, { clipped_alpha: (i / opt_steps) })
sess.run(reinit_optimizer_z)
- if opt_label_clipping and (i % opt_clip_interval) == 0: # and i < opt_steps * 0.75:
+ if opt_label_clipping and (i % opt_clip_interval) == 0 and i < opt_steps * 0.75:
# sess.run(clip_labels, { normalized_alpha: (i / opt_steps) ** 2 })
- sess.run(clip_labels, { normalized_alpha: 0.0 })
+ sess.run(clip_labels, { normalized_alpha: (i / opt_steps) })
sess.run(reinit_optimizer_y)
if opt_video and opt_snapshot_interval != 0 and (i % opt_snapshot_interval) == 0:
phi_guess = sess.run(output)