summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJules Laplace <julescarbon@gmail.com>2020-01-15 12:54:28 +0100
committerJules Laplace <julescarbon@gmail.com>2020-01-15 12:54:28 +0100
commit477ee89f4afbf622f74a1efd1e9e4d691884691c (patch)
tree250bff19e0c511d9738880814aaa1837d5699c0d
parent76678d45de9ce2ab0a6d674904c3ed351dcfd134 (diff)
fix?
-rw-r--r--cli/app/search/search_dense.py19
1 files changed, 13 insertions, 6 deletions
diff --git a/cli/app/search/search_dense.py b/cli/app/search/search_dense.py
index d0aef69..6126f33 100644
--- a/cli/app/search/search_dense.py
+++ b/cli/app/search/search_dense.py
@@ -232,14 +232,21 @@ def find_dense_embedding_for_images(params, opt_tag="inverse_" + timestamp(), op
if type(opt_feature_layers) == str:
opt_feature_layers = opt_feature_layers.split(',')
+ fixed_layers = []
+ for layer in opt_feature_layers:
+ if ',' in layer:
+ fixed_layers += layer.split(',')
+ else:
+ fixed_layers.append(layer)
for layer in opt_feature_layers:
- layer_name = feature_layer_names[layer]
- gen_feat = gen_feat_ex[layer_name]
- target_feat = target_feat_ex[layer_name]
- feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
- feat_loss += tf.reduce_mean(feat_square_diff) / len(opt_feature_layers)
- img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) / len(opt_feature_layers)
+ if layer in feature_layer_names:
+ layer_name = feature_layer_names[layer]
+ gen_feat = gen_feat_ex[layer_name]
+ target_feat = target_feat_ex[layer_name]
+ feat_square_diff = tf.reshape(tf.square(gen_feat - target_feat), [BATCH_SIZE, -1])
+ feat_loss += tf.reduce_mean(feat_square_diff) / len(opt_feature_layers)
+ img_feat_err += tf.reduce_mean(feat_square_diff, axis=1) / len(opt_feature_layers)
# conv1 1, conv1 2, conv3 2 and conv4 2
# gen_feat = gen_feat_ex["InceptionV3/Conv2d_1a_3x3"]