summaryrefslogtreecommitdiff
path: root/scripts/extract_acoustic_feature.py
blob: ccc8d66da31b70dfc869f6f38c01372b1021ecca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
extract alignments voices.
"""

import argparse
import multiprocessing
from pathlib import Path

import numpy

from become_yukarin.dataset.dataset import AcousticFeatureProcess
from become_yukarin.dataset.dataset import WaveFileLoadProcess
from become_yukarin.dataset.utility import MFCCAligner
from become_yukarin.param import AcousticFeatureParam
from become_yukarin.param import VoiceParam

base_voice_param = VoiceParam()
base_acoustic_feature_param = AcousticFeatureParam()

parser = argparse.ArgumentParser()
parser.add_argument('--input1_directory', '-i1', type=Path)
parser.add_argument('--input2_directory', '-i2', type=Path)
parser.add_argument('--output1_directory', '-o1', type=Path)
parser.add_argument('--output2_directory', '-o2', type=Path)
parser.add_argument('--sample_rate', type=int, default=base_voice_param.sample_rate)
parser.add_argument('--top_db', type=float, default=base_voice_param.top_db)
parser.add_argument('--frame_period', type=int, default=base_acoustic_feature_param.frame_period)
parser.add_argument('--order', type=int, default=base_acoustic_feature_param.order)
parser.add_argument('--alpha', type=float, default=base_acoustic_feature_param.alpha)
arguments = parser.parse_args()


def make_feature(
        path,
        sample_rate,
        top_db,
        frame_period,
        order,
        alpha,
):
    wave = WaveFileLoadProcess(sample_rate=sample_rate, top_db=top_db)(path, test=True)
    feature = AcousticFeatureProcess(frame_period=frame_period, order=order, alpha=alpha)(wave, test=True)
    return feature


def generate_feature(path1, path2):
    # load wave and padding
    wave_file_load_process = WaveFileLoadProcess(
        sample_rate=arguments.sample_rate,
        top_db=arguments.top_db,
    )
    wave1 = wave_file_load_process(path1, test=True)
    wave2 = wave_file_load_process(path2, test=True)

    # m = max(len(wave1.wave), len(wave2.wave))
    # wave1 = Wave(wave=numpy.pad(wave1.wave, (0, m - len(wave1.wave)), mode='mean'), sampling_rate=wave1.sampling_rate)
    # wave2 = Wave(wave=numpy.pad(wave2.wave, (0, m - len(wave2.wave)), mode='mean'), sampling_rate=wave2.sampling_rate)

    # make acoustic feature
    acoustic_feature_process = AcousticFeatureProcess(
        frame_period=arguments.frame_period,
        order=arguments.order,
        alpha=arguments.alpha,
    )
    f1 = acoustic_feature_process(wave1, test=True)
    f2 = acoustic_feature_process(wave2, test=True)

    # alignment
    aligner = MFCCAligner(f1.mfcc, f2.mfcc)

    f0_1, f0_2 = aligner.align(f1.f0, f2.f0)
    spectrogram_1, spectrogram_2 = aligner.align(f1.spectrogram, f2.spectrogram)
    aperiodicity_1, aperiodicity_2 = aligner.align(f1.aperiodicity, f2.aperiodicity)
    mfcc_1, mfcc_2 = aligner.align(f1.mfcc, f2.mfcc)

    # save
    path = Path(arguments.output1_directory, path1.stem + '.npy')
    numpy.save(path.absolute(), dict(f0=f0_1, spectrogram=spectrogram_1, aperiodicity=aperiodicity_1, mfcc=mfcc_1))
    print('saved!', path)

    path = Path(arguments.output2_directory, path2.stem + '.npy')
    numpy.save(path.absolute(), dict(f0=f0_2, spectrogram=spectrogram_2, aperiodicity=aperiodicity_2, mfcc=mfcc_2))
    print('saved!', path)


def generate_mean_var(path_directory: Path):
    path_mean = Path(path_directory, 'mean.npy')
    var_mean = Path(path_directory, 'var.npy')
    if path_mean.exists():
        path_mean.unlink()
    if var_mean.exists():
        var_mean.unlink()

    f0_list = []
    spectrogram_list = []
    aperiodicity_list = []
    mfcc_list = []
    for path in path_directory.glob('*'):
        d = numpy.load(path).item()  # type: dict
        f0_list.append(d['f0'].ravel())
        spectrogram_list.append(d['spectrogram'].ravel())
        aperiodicity_list.append(d['aperiodicity'].ravel())
        mfcc_list.append(d['mfcc'].ravel())

    f0_list = numpy.concatenate(f0_list)
    spectrogram_list = numpy.concatenate(spectrogram_list)
    aperiodicity_list = numpy.concatenate(aperiodicity_list)
    mfcc_list = numpy.concatenate(mfcc_list)

    mean = dict(
        f0=numpy.mean(f0_list),
        spectrogram=numpy.mean(spectrogram_list),
        aperiodicity=numpy.mean(aperiodicity_list),
        mfcc=numpy.mean(mfcc_list),
    )
    var = dict(
        f0=numpy.var(f0_list),
        spectrogram=numpy.var(spectrogram_list),
        aperiodicity=numpy.var(aperiodicity_list),
        mfcc=numpy.var(mfcc_list),
    )

    numpy.save(path_mean.absolute(), mean)
    numpy.save(var_mean.absolute(), var)


def main():
    paths1 = list(sorted(arguments.input1_directory.glob('*')))
    paths2 = list(sorted(arguments.input2_directory.glob('*')))
    assert len(paths1) == len(paths2)

    arguments.output1_directory.mkdir(exist_ok=True)
    arguments.output2_directory.mkdir(exist_ok=True)

    pool = multiprocessing.Pool()
    pool.starmap(generate_feature, zip(paths1, paths2))

    generate_mean_var(arguments.output1_directory)
    generate_mean_var(arguments.output2_directory)


if __name__ == '__main__':
    main()