1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
"""
extract alignments voices.
"""
import argparse
import multiprocessing
from pathlib import Path
import numpy
from become_yukarin.data_struct import AcousticFeature
from become_yukarin.dataset.dataset import AcousticFeatureLoadProcess
from become_yukarin.dataset.dataset import AcousticFeatureProcess
from become_yukarin.dataset.dataset import AcousticFeatureSaveProcess
from become_yukarin.dataset.dataset import WaveFileLoadProcess
from become_yukarin.dataset.utility import MFCCAligner
from become_yukarin.param import AcousticFeatureParam
from become_yukarin.param import VoiceParam
base_voice_param = VoiceParam()
base_acoustic_feature_param = AcousticFeatureParam()
parser = argparse.ArgumentParser()
parser.add_argument('--input1_directory', '-i1', type=Path)
parser.add_argument('--input2_directory', '-i2', type=Path)
parser.add_argument('--output1_directory', '-o1', type=Path)
parser.add_argument('--output2_directory', '-o2', type=Path)
parser.add_argument('--sample_rate', type=int, default=base_voice_param.sample_rate)
parser.add_argument('--top_db', type=float, default=base_voice_param.top_db)
parser.add_argument('--frame_period', type=int, default=base_acoustic_feature_param.frame_period)
parser.add_argument('--order', type=int, default=base_acoustic_feature_param.order)
parser.add_argument('--alpha', type=float, default=base_acoustic_feature_param.alpha)
arguments = parser.parse_args()
def make_feature(
path,
sample_rate,
top_db,
frame_period,
order,
alpha,
):
wave = WaveFileLoadProcess(sample_rate=sample_rate, top_db=top_db)(path, test=True)
feature = AcousticFeatureProcess(frame_period=frame_period, order=order, alpha=alpha)(wave, test=True)
return feature
def generate_feature(path1, path2):
# load wave and padding
wave_file_load_process = WaveFileLoadProcess(
sample_rate=arguments.sample_rate,
top_db=arguments.top_db,
)
wave1 = wave_file_load_process(path1, test=True)
wave2 = wave_file_load_process(path2, test=True)
# make acoustic feature
acoustic_feature_process = AcousticFeatureProcess(
frame_period=arguments.frame_period,
order=arguments.order,
alpha=arguments.alpha,
)
f1 = acoustic_feature_process(wave1, test=True)
f2 = acoustic_feature_process(wave2, test=True)
# alignment
aligner = MFCCAligner(f1.mfcc, f2.mfcc)
f0_1, f0_2 = aligner.align(f1.f0, f2.f0)
spectrogram_1, spectrogram_2 = aligner.align(f1.spectrogram, f2.spectrogram)
aperiodicity_1, aperiodicity_2 = aligner.align(f1.aperiodicity, f2.aperiodicity)
mfcc_1, mfcc_2 = aligner.align(f1.mfcc, f2.mfcc)
voiced_1, voiced_2 = aligner.align(f1.voiced, f2.voiced)
# save
acoustic_feature_save_process = AcousticFeatureSaveProcess(validate=True)
path = Path(arguments.output1_directory, path1.stem + '.npy')
feature = AcousticFeature(
f0=f0_1,
spectrogram=spectrogram_1,
aperiodicity=aperiodicity_1,
mfcc=mfcc_1,
voiced=voiced_1,
)
acoustic_feature_save_process({'path': path, 'feature': feature})
print('saved!', path)
path = Path(arguments.output2_directory, path2.stem + '.npy')
feature = AcousticFeature(
f0=f0_2,
spectrogram=spectrogram_2,
aperiodicity=aperiodicity_2,
mfcc=mfcc_2,
voiced=voiced_2,
)
acoustic_feature_save_process({'path': path, 'feature': feature})
print('saved!', path)
def generate_mean_var(path_directory: Path):
path_mean = Path(path_directory, 'mean.npy')
var_mean = Path(path_directory, 'var.npy')
if path_mean.exists():
path_mean.unlink()
if var_mean.exists():
var_mean.unlink()
acoustic_feature_load_process = AcousticFeatureLoadProcess(validate=True)
acoustic_feature_save_process = AcousticFeatureSaveProcess(validate=False)
f0_list = []
spectrogram_list = []
aperiodicity_list = []
mfcc_list = []
for path in path_directory.glob('*'):
feature = acoustic_feature_load_process(path)
f0_list.append(feature.f0[feature.voiced].ravel()) # remove unvoiced
spectrogram_list.append(feature.spectrogram.ravel())
aperiodicity_list.append(feature.aperiodicity.ravel())
mfcc_list.append(feature.mfcc.ravel())
f0_list = numpy.concatenate(f0_list)
spectrogram_list = numpy.concatenate(spectrogram_list)
aperiodicity_list = numpy.concatenate(aperiodicity_list)
mfcc_list = numpy.concatenate(mfcc_list)
mean = AcousticFeature(
f0=numpy.mean(f0_list),
spectrogram=numpy.mean(spectrogram_list),
aperiodicity=numpy.mean(aperiodicity_list),
mfcc=numpy.mean(mfcc_list),
voiced=numpy.nan,
)
var = AcousticFeature(
f0=numpy.var(f0_list),
spectrogram=numpy.var(spectrogram_list),
aperiodicity=numpy.var(aperiodicity_list),
mfcc=numpy.var(mfcc_list),
voiced=numpy.nan,
)
acoustic_feature_save_process({'path': path_mean, 'feature': mean})
acoustic_feature_save_process({'path': var_mean, 'feature': var})
def main():
paths1 = list(sorted(arguments.input1_directory.glob('*')))
paths2 = list(sorted(arguments.input2_directory.glob('*')))
assert len(paths1) == len(paths2)
arguments.output1_directory.mkdir(exist_ok=True)
arguments.output2_directory.mkdir(exist_ok=True)
pool = multiprocessing.Pool()
pool.starmap(generate_feature, zip(paths1, paths2))
generate_mean_var(arguments.output1_directory)
generate_mean_var(arguments.output2_directory)
if __name__ == '__main__':
main()
|