summaryrefslogtreecommitdiff
path: root/become_yukarin/voice_changer.py
blob: 5e0eac00827c76c1b3ea4ff3ec90fc4ca48fe476 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from typing import List
from typing import NamedTuple

import numpy

from .acoustic_converter import AcousticConverter
from .data_struct import AcousticFeature
from .data_struct import Wave
from .super_resolution import SuperResolution
from .vocoder import Vocoder


class VoiceChanger(object):
    def __init__(
            self,
            acoustic_converter: AcousticConverter,
            super_resolution: SuperResolution,
            vocoder: Vocoder,
            output_sampling_rate: int = None,
    ) -> None:
        if output_sampling_rate is None:
            output_sampling_rate = super_resolution.config.dataset.param.voice_param.sample_rate

        self.acoustic_converter = acoustic_converter
        self.super_resolution = super_resolution
        self.vocoder = vocoder
        self.output_sampling_rate = output_sampling_rate

    def convert_from_wave_path(self, wave_path: str):
        w_in = self.acoustic_converter._wave_process(wave_path)
        return self.convert_from_wave(w_in)

    def convert_from_wave(self, wave: Wave):
        f_in = self.acoustic_converter._feature_process(wave)
        f_high = self.convert_from_acoustic_feature(f_in)
        wave = self.vocoder.decode(f_high)
        return wave

    def convert_from_acoustic_feature(self, f_in: AcousticFeature):
        f_low = self.acoustic_converter.convert_to_feature(f_in)
        s_high = self.super_resolution.convert(f_low.spectrogram.astype(numpy.float32))
        f_high = self.super_resolution.convert_to_feature(s_high, f_low)
        return f_high


class Segment(NamedTuple):
    start_time: float
    wave: Wave

    @property
    def time_length(self):
        return len(self.wave.wave) / self.wave.sampling_rate

    @property
    def end_time(self):
        return self.time_length + self.start_time


class VoiceChangerStream(object):
    def __init__(
            self,
            voice_changer: VoiceChanger,
            sampling_rate: int,
            in_dtype=numpy.float32,
    ):
        self.voice_changer = voice_changer
        self.sampling_rate = sampling_rate
        self.in_dtype = in_dtype
        self._data_stream = []  # type: List[Segment]

    @property
    def vocoder(self):
        return self.voice_changer.vocoder

    def add_wave(self, start_time: float, wave: Wave):
        # validation
        assert wave.sampling_rate == self.sampling_rate
        assert wave.wave.dtype == self.in_dtype

        segment = Segment(start_time=start_time, wave=wave)
        self._data_stream.append(segment)

    def remove_wave(self, end_time: float):
        self._data_stream = list(filter(lambda s: s.end_time > end_time, self._data_stream))

    def convert_to_feature(self, start_time: float, time_length: float):
        end_time = start_time + time_length
        buffer_list = []
        stream = filter(lambda s: not (end_time < s.start_time or s.end_time < start_time), self._data_stream)

        start_time_buffer = start_time
        remaining_time = time_length
        for segment in stream:
            # padding
            if segment.start_time > start_time_buffer:
                pad = numpy.zeros(
                    shape=int((segment.start_time - start_time_buffer) * self.sampling_rate),
                    dtype=self.in_dtype,
                )
                buffer_list.append(pad)
                start_time_buffer = segment.start_time

            if remaining_time > segment.end_time - start_time_buffer:
                one_time_length = segment.end_time - start_time_buffer
            else:
                one_time_length = remaining_time

            first_index = int((start_time_buffer - segment.start_time) * self.sampling_rate)
            last_index = int(first_index + one_time_length * self.sampling_rate)
            one_buffer = segment.wave.wave[first_index:last_index]
            buffer_list.append(one_buffer)

            start_time_buffer += one_time_length
            remaining_time -= one_time_length

            if start_time_buffer >= end_time:
                break
        else:
            # last padding
            pad = numpy.zeros(shape=int((end_time - start_time_buffer) * self.sampling_rate), dtype=self.in_dtype)
            buffer_list.append(pad)

        buffer = numpy.concatenate(buffer_list)
        in_wave = Wave(wave=buffer, sampling_rate=self.sampling_rate)
        in_feature = self.vocoder.encode(in_wave)
        out_feature = self.voice_changer.convert_from_acoustic_feature(in_feature)
        return out_feature

    def convert(self, start_time: float, time_length: float):
        feature = self.convert_to_feature(start_time=start_time, time_length=time_length)
        out_wave = self.vocoder.decode(
            acoustic_feature=feature,
        )
        return out_wave

    def convert_with_extra_time(self, start_time: float, time_length: float, extra_time: float):
        """
        :param extra_time: 音声変換時に余分に使うデータの時間長。ゼロパディングを防ぐ。
        """
        frame_period = self.vocoder.acoustic_feature_param.frame_period

        start_time -= extra_time
        time_length += extra_time * 2

        extra_feature = self.convert_to_feature(start_time=start_time, time_length=time_length)

        pad = int(extra_time / (frame_period / 1000))
        feature = AcousticFeature(
            f0=extra_feature.f0[pad:-pad],
            spectrogram=extra_feature.spectrogram[pad:-pad],
            aperiodicity=extra_feature.aperiodicity[pad:-pad],
            mfcc=extra_feature.mfcc[pad:-pad],
            voiced=extra_feature.voiced[pad:-pad],
        )

        out_wave = self.vocoder.decode(
            acoustic_feature=feature,
        )
        return out_wave


class VoiceChangerStreamWrapper(object):
    def __init__(
            self,
            voice_changer_stream: VoiceChangerStream,
            extra_time: float = 0.0
    ):
        self.voice_changer_stream = voice_changer_stream
        self.extra_time = extra_time
        self._current_time = 0

    def convert_next(self, time_length: float):
        out_wave = self.voice_changer_stream.convert_with_extra_time(
            start_time=self._current_time,
            time_length=time_length,
            extra_time=self.extra_time,
        )
        self._current_time += time_length
        return out_wave

    def remove_previous_wave(self):
        self.voice_changer_stream.remove_wave(end_time=self._current_time - self.extra_time)