1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
from typing import List
from typing import NamedTuple
import numpy
from .acoustic_converter import AcousticConverter
from .data_struct import AcousticFeature
from .data_struct import Wave
from .super_resolution import SuperResolution
from .vocoder import Vocoder
class VoiceChanger(object):
def __init__(
self,
acoustic_converter: AcousticConverter,
super_resolution: SuperResolution,
vocoder: Vocoder,
output_sampling_rate: int = None,
) -> None:
if output_sampling_rate is None:
output_sampling_rate = super_resolution.config.dataset.param.voice_param.sample_rate
self.acoustic_converter = acoustic_converter
self.super_resolution = super_resolution
self.vocoder = vocoder
self.output_sampling_rate = output_sampling_rate
def convert_from_wave_path(self, wave_path: str):
w_in = self.acoustic_converter._wave_process(wave_path)
return self.convert_from_wave(w_in)
def convert_from_wave(self, wave: Wave):
f_in = self.acoustic_converter._feature_process(wave)
f_high = self.convert_from_acoustic_feature(f_in)
wave = self.vocoder.decode(f_high)
return wave
def convert_from_acoustic_feature(self, f_in: AcousticFeature):
f_low = self.acoustic_converter.convert_to_feature(f_in)
s_high = self.super_resolution.convert(f_low.spectrogram.astype(numpy.float32))
f_high = self.super_resolution.convert_to_feature(s_high, f_low)
return f_high
class Segment(NamedTuple):
start_time: float
wave: Wave
@property
def time_length(self):
return len(self.wave.wave) / self.wave.sampling_rate
@property
def end_time(self):
return self.time_length + self.start_time
class VoiceChangerStream(object):
def __init__(
self,
voice_changer: VoiceChanger,
sampling_rate: int,
in_dtype=numpy.float32,
):
self.voice_changer = voice_changer
self.sampling_rate = sampling_rate
self.in_dtype = in_dtype
self._data_stream = [] # type: List[Segment]
@property
def vocoder(self):
return self.voice_changer.vocoder
def add_wave(self, start_time: float, wave: Wave):
# validation
assert wave.sampling_rate == self.sampling_rate
assert wave.wave.dtype == self.in_dtype
segment = Segment(start_time=start_time, wave=wave)
self._data_stream.append(segment)
def remove_wave(self, end_time: float):
self._data_stream = list(filter(lambda s: s.end_time > end_time, self._data_stream))
def convert_to_feature(self, start_time: float, time_length: float):
end_time = start_time + time_length
buffer_list = []
stream = filter(lambda s: not (end_time < s.start_time or s.end_time < start_time), self._data_stream)
start_time_buffer = start_time
remaining_time = time_length
for segment in stream:
# padding
if segment.start_time > start_time_buffer:
pad = numpy.zeros(
shape=int((segment.start_time - start_time_buffer) * self.sampling_rate),
dtype=self.in_dtype,
)
buffer_list.append(pad)
start_time_buffer = segment.start_time
if remaining_time > segment.end_time - start_time_buffer:
one_time_length = segment.end_time - start_time_buffer
else:
one_time_length = remaining_time
first_index = int((start_time_buffer - segment.start_time) * self.sampling_rate)
last_index = int(first_index + one_time_length * self.sampling_rate)
one_buffer = segment.wave.wave[first_index:last_index]
buffer_list.append(one_buffer)
start_time_buffer += one_time_length
remaining_time -= one_time_length
if start_time_buffer >= end_time:
break
else:
# last padding
pad = numpy.zeros(shape=int((end_time - start_time_buffer) * self.sampling_rate), dtype=self.in_dtype)
buffer_list.append(pad)
buffer = numpy.concatenate(buffer_list)
in_wave = Wave(wave=buffer, sampling_rate=self.sampling_rate)
in_feature = self.vocoder.encode(in_wave)
out_feature = self.voice_changer.convert_from_acoustic_feature(in_feature)
return out_feature
def convert(self, start_time: float, time_length: float):
feature = self.convert_to_feature(start_time=start_time, time_length=time_length)
out_wave = self.vocoder.decode(
acoustic_feature=feature,
)
return out_wave
def convert_with_extra_time(self, start_time: float, time_length: float, extra_time: float):
"""
:param extra_time: 音声変換時に余分に使うデータの時間長。ゼロパディングを防ぐ。
"""
frame_period = self.vocoder.acoustic_feature_param.frame_period
start_time -= extra_time
time_length += extra_time * 2
extra_feature = self.convert_to_feature(start_time=start_time, time_length=time_length)
pad = int(extra_time / (frame_period / 1000))
feature = AcousticFeature(
f0=extra_feature.f0[pad:-pad],
spectrogram=extra_feature.spectrogram[pad:-pad],
aperiodicity=extra_feature.aperiodicity[pad:-pad],
mfcc=extra_feature.mfcc[pad:-pad],
voiced=extra_feature.voiced[pad:-pad],
)
out_wave = self.vocoder.decode(
acoustic_feature=feature,
)
return out_wave
class VoiceChangerStreamWrapper(object):
def __init__(
self,
voice_changer_stream: VoiceChangerStream,
extra_time: float = 0.0
):
self.voice_changer_stream = voice_changer_stream
self.extra_time = extra_time
self._current_time = 0
def convert_next(self, time_length: float):
out_wave = self.voice_changer_stream.convert_with_extra_time(
start_time=self._current_time,
time_length=time_length,
extra_time=self.extra_time,
)
self._current_time += time_length
return out_wave
def remove_previous_wave(self):
self.voice_changer_stream.remove_wave(end_time=self._current_time - self.extra_time)
|