summaryrefslogtreecommitdiff
path: root/become_yukarin/model/sr_model.py
blob: 12863a7b1db3179dda88fb7028ac785d7bd52ea4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import chainer
import chainer.functions as F
import chainer.links as L

from become_yukarin.config.sr_config import SRModelConfig


class CBR(chainer.Chain):
    def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False) -> None:
        super().__init__()
        self.bn = bn
        self.activation = activation
        self.dropout = dropout

        w = chainer.initializers.Normal(0.02)
        with self.init_scope():
            if sample == 'down':
                self.c = L.Convolution2D(ch0, ch1, 4, 2, 1, initialW=w)
            elif sample == 'up':
                self.c = L.Deconvolution2D(ch0, ch1, 4, 2, 1, initialW=w)
            else:
                self.c = L.Convolution2D(ch0, ch1, 1, 1, 0, initialW=w)
            if bn:
                self.batchnorm = L.BatchNormalization(ch1)

    def __call__(self, x):
        h = self.c(x)
        if self.bn:
            h = self.batchnorm(h)
        if self.dropout:
            h = F.dropout(h)
        if self.activation is not None:
            h = self.activation(h)
        return h


class SREncoder(chainer.Chain):
    def __init__(self, in_ch, base=64, extensive_layers=8) -> None:
        super().__init__()
        w = chainer.initializers.Normal(0.02)
        with self.init_scope():
            if extensive_layers > 0:
                self.c0 = L.Convolution2D(in_ch, base * 1, 3, 1, 1, initialW=w)
            else:
                self.c0 = L.Convolution2D(in_ch, base * 1, 1, 1, 0, initialW=w)

            _choose = lambda i: 'down' if i < extensive_layers else 'same'
            self.c1 = CBR(base * 1, base * 2, bn=True, sample=_choose(1), activation=F.leaky_relu, dropout=False)
            self.c2 = CBR(base * 2, base * 4, bn=True, sample=_choose(2), activation=F.leaky_relu, dropout=False)
            self.c3 = CBR(base * 4, base * 8, bn=True, sample=_choose(3), activation=F.leaky_relu, dropout=False)
            self.c4 = CBR(base * 8, base * 8, bn=True, sample=_choose(4), activation=F.leaky_relu, dropout=False)
            self.c5 = CBR(base * 8, base * 8, bn=True, sample=_choose(5), activation=F.leaky_relu, dropout=False)
            self.c6 = CBR(base * 8, base * 8, bn=True, sample=_choose(6), activation=F.leaky_relu, dropout=False)
            self.c7 = CBR(base * 8, base * 8, bn=True, sample=_choose(7), activation=F.leaky_relu, dropout=False)

    def __call__(self, x):
        hs = [F.leaky_relu(self.c0(x))]
        for i in range(1, 8):
            hs.append(self['c%d' % i](hs[i - 1]))
        return hs


class SRDecoder(chainer.Chain):
    def __init__(self, out_ch, base=64, extensive_layers=8) -> None:
        super().__init__()
        w = chainer.initializers.Normal(0.02)
        with self.init_scope():
            _choose = lambda i: 'up' if i >= 8 - extensive_layers else 'same'
            self.c0 = CBR(base * 8, base * 8, bn=True, sample=_choose(0), activation=F.relu, dropout=True)
            self.c1 = CBR(base * 16, base * 8, bn=True, sample=_choose(1), activation=F.relu, dropout=True)
            self.c2 = CBR(base * 16, base * 8, bn=True, sample=_choose(2), activation=F.relu, dropout=True)
            self.c3 = CBR(base * 16, base * 8, bn=True, sample=_choose(3), activation=F.relu, dropout=False)
            self.c4 = CBR(base * 16, base * 4, bn=True, sample=_choose(4), activation=F.relu, dropout=False)
            self.c5 = CBR(base * 8, base * 2, bn=True, sample=_choose(5), activation=F.relu, dropout=False)
            self.c6 = CBR(base * 4, base * 1, bn=True, sample=_choose(6), activation=F.relu, dropout=False)

            if extensive_layers > 0:
                self.c7 = L.Convolution2D(base * 2, out_ch, 3, 1, 1, initialW=w)
            else:
                self.c7 = L.Convolution2D(base * 2, out_ch, 1, 1, 0, initialW=w)

    def __call__(self, hs):
        h = self.c0(hs[-1])
        for i in range(1, 8):
            h = F.concat([h, hs[-i - 1]])
            if i < 7:
                h = self['c%d' % i](h)
            else:
                h = self.c7(h)
        return h


class SRPredictor(chainer.Chain):
    def __init__(self, in_ch, out_ch, base, extensive_layers) -> None:
        super().__init__()
        with self.init_scope():
            self.encoder = Encoder(in_ch, base=base, extensive_layers=extensive_layers)
            self.decoder = Decoder(out_ch, base=base, extensive_layers=extensive_layers)

    def __call__(self, x):
        return self.decoder(self.encoder(x))


class SRDiscriminator(chainer.Chain):
    def __init__(self, in_ch, out_ch, base=32, extensive_layers=5) -> None:
        super().__init__()
        w = chainer.initializers.Normal(0.02)
        with self.init_scope():
            _choose = lambda i: 'down' if i < extensive_layers else 'same'
            self.c0_0 = CBR(in_ch, base * 1, bn=False, sample=_choose(0), activation=F.leaky_relu, dropout=False)
            self.c0_1 = CBR(out_ch, base * 1, bn=False, sample=_choose(0), activation=F.leaky_relu, dropout=False)
            self.c1 = CBR(base * 2, base * 4, bn=True, sample=_choose(1), activation=F.leaky_relu, dropout=False)
            self.c2 = CBR(base * 4, base * 8, bn=True, sample=_choose(2), activation=F.leaky_relu, dropout=False)
            self.c3 = CBR(base * 8, base * 16, bn=True, sample=_choose(3), activation=F.leaky_relu, dropout=False)

            if extensive_layers > 4:
                self.c4 = L.Convolution2D(base * 16, 1, 3, 1, 1, initialW=w)
            else:
                self.c4 = L.Convolution2D(base * 16, 1, 1, 1, 0, initialW=w)

    def __call__(self, x_0, x_1):
        h = F.concat([self.c0_0(x_0), self.c0_1(x_1)])
        h = self.c1(h)
        h = self.c2(h)
        h = self.c3(h)
        h = self.c4(h)
        # h = F.average_pooling_2d(h, h.data.shape[2], 1, 0)
        return h


def create_predictor_sr(config: SRModelConfig):
    return SRPredictor(
        in_ch=1,
        out_ch=1,
        base=config.generator_base_channels,
        extensive_layers=config.generator_extensive_layers,
    )


def create_discriminator_sr(config: SRModelConfig):
    return SRDiscriminator(
        in_ch=1,
        out_ch=1,
        base=config.discriminator_base_channels,
        extensive_layers=config.discriminator_extensive_layers,
    )


def create_sr(config: SRModelConfig):
    predictor = create_predictor_sr(config)
    discriminator = create_discriminator_sr(config)
    return predictor, discriminator