1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
import chainer
import chainer.functions as F
import chainer.links as L
from become_yukarin.config.sr_config import SRModelConfig
class CBR(chainer.Chain):
def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False):
super().__init__()
self.bn = bn
self.activation = activation
self.dropout = dropout
w = chainer.initializers.Normal(0.02)
with self.init_scope():
if sample == 'down':
self.c = L.Convolution2D(ch0, ch1, 4, 2, 1, initialW=w)
else:
self.c = L.Deconvolution2D(ch0, ch1, 4, 2, 1, initialW=w)
if bn:
self.batchnorm = L.BatchNormalization(ch1)
def __call__(self, x):
h = self.c(x)
if self.bn:
h = self.batchnorm(h)
if self.dropout:
h = F.dropout(h)
if self.activation is not None:
h = self.activation(h)
return h
class Encoder(chainer.Chain):
def __init__(self, in_ch):
super().__init__()
w = chainer.initializers.Normal(0.02)
with self.init_scope():
self.c0 = L.Convolution2D(in_ch, 64, 3, 1, 1, initialW=w)
self.c1 = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
self.c2 = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
self.c3 = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
self.c4 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
self.c5 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
self.c6 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
self.c7 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
def __call__(self, x):
hs = [F.leaky_relu(self.c0(x))]
for i in range(1, 8):
hs.append(self['c%d' % i](hs[i - 1]))
return hs
class Decoder(chainer.Chain):
def __init__(self, out_ch):
super().__init__()
w = chainer.initializers.Normal(0.02)
with self.init_scope():
self.c0 = CBR(512, 512, bn=True, sample='up', activation=F.relu, dropout=True)
self.c1 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=True)
self.c2 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=True)
self.c3 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=False)
self.c4 = CBR(1024, 256, bn=True, sample='up', activation=F.relu, dropout=False)
self.c5 = CBR(512, 128, bn=True, sample='up', activation=F.relu, dropout=False)
self.c6 = CBR(256, 64, bn=True, sample='up', activation=F.relu, dropout=False)
self.c7 = L.Convolution2D(128, out_ch, 3, 1, 1, initialW=w)
def __call__(self, hs):
h = self.c0(hs[-1])
for i in range(1, 8):
h = F.concat([h, hs[-i - 1]])
if i < 7:
h = self['c%d' % i](h)
else:
h = self.c7(h)
return h
class SRPredictor(chainer.Chain):
def __init__(self, in_ch, out_ch):
super().__init__()
with self.init_scope():
self.encoder = Encoder(in_ch)
self.decoder = Decoder(out_ch)
def __call__(self, x):
return self.decoder(self.encoder(x))
class SRDiscriminator(chainer.Chain):
def __init__(self, in_ch, out_ch):
super().__init__()
w = chainer.initializers.Normal(0.02)
with self.init_scope():
self.c0_0 = CBR(in_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
self.c0_1 = CBR(out_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
self.c1 = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
self.c2 = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
self.c3 = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
self.c4 = L.Convolution2D(512, 1, 3, 1, 1, initialW=w)
def __call__(self, x_0, x_1):
h = F.concat([self.c0_0(x_0), self.c0_1(x_1)])
h = self.c1(h)
h = self.c2(h)
h = self.c3(h)
h = self.c4(h)
# h = F.average_pooling_2d(h, h.data.shape[2], 1, 0)
return h
def create_sr(config: SRModelConfig):
predictor = SRPredictor(in_ch=1, out_ch=1)
discriminator = SRDiscriminator(in_ch=1, out_ch=1)
return predictor, discriminator
|