1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
import json
import os
import typing
from abc import ABCMeta, abstractmethod
from typing import NamedTuple
import nnmnkwii.preprocessing
import chainer
import librosa
import numpy
import pysptk
import pyworld
class Wave(NamedTuple):
wave: numpy.ndarray
sampling_rate: int
class AcousticFeature(NamedTuple):
f0: numpy.ndarray
spectrogram: numpy.ndarray
aperiodicity: numpy.ndarray
mfcc: numpy.ndarray
class BaseDataProcess(metaclass=ABCMeta):
@abstractmethod
def __call__(self, data, test):
pass
class ChainProcess(BaseDataProcess):
def __init__(self, process: typing.Iterable[BaseDataProcess]):
self._process = process
def __call__(self, data, test):
for p in self._process:
data = p(data, test)
return data
class SplitProcess(BaseDataProcess):
def __init__(self, process: typing.Dict[str, typing.Optional[BaseDataProcess]]):
self._process = process
def __call__(self, data, test):
data = {
k: p(data, test) if p is not None else data
for k, p in self._process.items()
}
return data
class DataProcessDataset(chainer.dataset.DatasetMixin):
def __init__(self, data: typing.List, data_process: BaseDataProcess, test):
self._data = data
self._data_process = data_process
self._test = test
def __len__(self):
return len(self._data)
def get_example(self, i):
return self._data_process(data=self._data[i], test=self._test)
class WaveFileLoadProcess(BaseDataProcess):
def __init__(self, sample_rate: int, top_db: float):
self._sample_rate = sample_rate
self._top_db = top_db
def __call__(self, data: str, test):
wave = librosa.core.load(data, sr=self._sample_rate)[0]
wave = librosa.effects.remix(wave, intervals=librosa.effects.split(wave, top_db=self._top_db))
return Wave(wave, self._sample_rate)
class AcousticFeatureProcess(BaseDataProcess):
def __init__(self, frame_period, order, alpha):
self._frame_period = frame_period
self._order = order
self._alpha = alpha
def __call__(self, data: Wave, test):
x = data.wave.astype(numpy.float64)
fs = data.sampling_rate
_f0, t = pyworld.dio(x, fs, frame_period=self._frame_period)
f0 = pyworld.stonemask(x, _f0, t, fs)
spectrogram = pyworld.cheaptrick(x, f0, t, fs)
aperiodicity = pyworld.d4c(x, f0, t, fs)
mfcc = pysptk.sp2mc(spectrogram, order=self._order, alpha=self._alpha)
return AcousticFeature(
f0=f0,
spectrogram=spectrogram,
aperiodicity=aperiodicity,
mfcc=mfcc,
)
# data_process = ChainProcess([
# SplitProcess(dict(
# input=ChainProcess([
# WaveFileLoadProcess(),
# AcousticFeatureProcess(),
# ]),
# tareget=ChainProcess([
# WaveFileLoadProcess(),
# AcousticFeatureProcess(),
# ]),
# )),
#
# PILImageProcess(mode='RGB'),
# RandomFlipImageProcess(p_flip_horizontal=0.5, p_flip_vertical=0),
# RandomResizeImageProcess(min_short=128, max_short=160),
# RandomCropImageProcess(crop_width=128, crop_height=128),
# RgbImageArrayProcess(),
# SplitProcess({
# 'target': None,
# 'raw_line': RawLineImageArrayProcess(),
# })
# ])
#
#
# def choose(config: DatasetConfig):
# if config.images_glob is not None:
# import glob
# paths = glob.glob(config.images_glob)
# paths = data_filter(
# datas=paths,
# keys=list(map(lambda p: os.path.basename(p), paths)),
# filter_func=filter_image,
# num_process=None,
# cache_path=config.cache_path,
# )
# paths = list(paths)
# else:
# paths = json.load(open(config.images_list))
#
# num_test = config.num_test
# train_paths = paths[num_test:]
# test_paths = paths[:num_test]
# train_for_evaluate_paths = train_paths[:num_test]
#
# return {
# 'train': DataProcessDataset(train_paths, data_process, test=False),
# 'test': DataProcessDataset(test_paths, data_process, test=True),
# 'train_eval': DataProcessDataset(train_for_evaluate_paths, data_process, test=True),
# }
|