1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
import copy
import typing
from abc import ABCMeta, abstractmethod
from collections import defaultdict
from pathlib import Path
from typing import Callable
from typing import Dict
from typing import List
import chainer
import librosa
import numpy
import pysptk
import pyworld
from ..config import DatasetConfig
from ..data_struct import AcousticFeature
from ..data_struct import Wave
class BaseDataProcess(metaclass=ABCMeta):
@abstractmethod
def __call__(self, data, test):
pass
class LambdaProcess(BaseDataProcess):
def __init__(self, process: Callable[[any, bool], any]):
self._process = process
def __call__(self, data, test):
return self._process(data, test)
class DictKeyReplaceProcess(BaseDataProcess):
def __init__(self, key_map: Dict[str, str]):
self._key_map = key_map
def __call__(self, data: Dict[str, any], test):
return {key_after: data[key_before] for key_after, key_before in self._key_map}
class ChainProcess(BaseDataProcess):
def __init__(self, process: typing.Iterable[BaseDataProcess]):
self._process = list(process)
def __call__(self, data, test):
for p in self._process:
data = p(data, test)
return data
def append(self, process: BaseDataProcess):
self._process.append(process)
class SplitProcess(BaseDataProcess):
def __init__(self, process: typing.Dict[str, typing.Optional[BaseDataProcess]]):
self._process = process
def __call__(self, data, test):
data = {
k: p(data, test) if p is not None else data
for k, p in self._process.items()
}
return data
class WaveFileLoadProcess(BaseDataProcess):
def __init__(self, sample_rate: int, top_db: float, dtype=numpy.float32):
self._sample_rate = sample_rate
self._top_db = top_db
self._dtype = dtype
def __call__(self, data: str, test):
wave = librosa.core.load(data, sr=self._sample_rate, dtype=self._dtype)[0]
wave = librosa.effects.remix(wave, intervals=librosa.effects.split(wave, top_db=self._top_db))
return Wave(wave, self._sample_rate)
class AcousticFeatureProcess(BaseDataProcess):
def __init__(self, frame_period, order, alpha, dtype=numpy.float32):
self._frame_period = frame_period
self._order = order
self._alpha = alpha
self._dtype = dtype
def __call__(self, data: Wave, test):
x = data.wave.astype(numpy.float64)
fs = data.sampling_rate
_f0, t = pyworld.dio(x, fs, frame_period=self._frame_period)
f0 = pyworld.stonemask(x, _f0, t, fs)
spectrogram = pyworld.cheaptrick(x, f0, t, fs)
aperiodicity = pyworld.d4c(x, f0, t, fs)
mfcc = pysptk.sp2mc(spectrogram, order=self._order, alpha=self._alpha)
voiced = ~(f0 == 0) # type: numpy.ndarray
feature = AcousticFeature(
f0=f0[:, None].astype(self._dtype),
spectrogram=spectrogram.astype(self._dtype),
aperiodicity=aperiodicity.astype(self._dtype),
mfcc=mfcc.astype(self._dtype),
voiced=voiced[:, None],
)
feature.validate()
return feature
class AcousticFeatureLoadProcess(BaseDataProcess):
def __init__(self, validate=False):
self._validate = validate
def __call__(self, path: Path, test=None):
d = numpy.load(path).item() # type: dict
feature = AcousticFeature(
f0=d['f0'],
spectrogram=d['spectrogram'],
aperiodicity=d['aperiodicity'],
mfcc=d['mfcc'],
voiced=d['voiced'],
)
if self._validate:
feature.validate()
return feature
class AcousticFeatureSaveProcess(BaseDataProcess):
def __init__(self, validate=False):
self._validate = validate
def __call__(self, data: Dict[str, any], test=None):
path = data['path'] # type: Path
feature = data['feature'] # type: AcousticFeature
if self._validate:
feature.validate()
numpy.save(path.absolute(), dict(
f0=feature.f0,
spectrogram=feature.spectrogram,
aperiodicity=feature.aperiodicity,
mfcc=feature.mfcc,
voiced=feature.voiced,
))
class DistillateUsingFeatureProcess(BaseDataProcess):
def __init__(self, targets: List[str]):
self._targets = targets
def __call__(self, feature: AcousticFeature, test=None):
d = defaultdict(lambda: numpy.nan, **{t: getattr(feature, t) for t in self._targets})
return AcousticFeature(
f0=d['f0'],
spectrogram=d['spectrogram'],
aperiodicity=d['aperiodicity'],
mfcc=d['mfcc'],
voiced=d['voiced'],
)
class MakeMaskProcess(BaseDataProcess):
def __init__(self):
pass
def __call__(self, feature: AcousticFeature, test=None):
return AcousticFeature(
f0=feature.voiced,
spectrogram=numpy.ones_like(feature.spectrogram, dtype=numpy.bool),
aperiodicity=numpy.ones_like(feature.aperiodicity, dtype=numpy.bool),
mfcc=numpy.ones_like(feature.mfcc, dtype=numpy.bool),
voiced=numpy.ones_like(feature.voiced, dtype=numpy.bool),
).astype(numpy.float32)
class AcousticFeatureNormalizeProcess(BaseDataProcess):
def __init__(self, mean: AcousticFeature, var: AcousticFeature):
self._mean = mean
self._var = var
def __call__(self, data: AcousticFeature, test):
f0 = (data.f0 - self._mean.f0) / numpy.sqrt(self._var.f0)
f0[~data.voiced] = 0
return AcousticFeature(
f0=f0,
spectrogram=(data.spectrogram - self._mean.spectrogram) / numpy.sqrt(self._var.spectrogram),
aperiodicity=(data.aperiodicity - self._mean.aperiodicity) / numpy.sqrt(self._var.aperiodicity),
mfcc=(data.mfcc - self._mean.mfcc) / numpy.sqrt(self._var.mfcc),
voiced=data.voiced,
)
class AcousticFeatureDenormalizeProcess(BaseDataProcess):
def __init__(self, mean: AcousticFeature, var: AcousticFeature):
self._mean = mean
self._var = var
def __call__(self, data: AcousticFeature, test):
f0 = data.f0 * numpy.sqrt(self._var.f0) + self._mean.f0
f0[~data.voiced] = 0
return AcousticFeature(
f0=f0,
spectrogram=data.spectrogram * numpy.sqrt(self._var.spectrogram) + self._mean.spectrogram,
aperiodicity=data.aperiodicity * numpy.sqrt(self._var.aperiodicity) + self._mean.aperiodicity,
mfcc=data.mfcc * numpy.sqrt(self._var.mfcc) + self._mean.mfcc,
voiced=data.voiced,
)
class EncodeFeatureProcess(BaseDataProcess):
def __init__(self, targets: List[str]):
self._targets = targets
def __call__(self, data: AcousticFeature, test):
feature = numpy.concatenate([getattr(data, t) for t in self._targets], axis=1)
feature = feature.T
return feature
class DecodeFeatureProcess(BaseDataProcess):
def __init__(self, targets: List[str], sizes: Dict[str, int]):
assert all(t in sizes for t in targets)
self._targets = targets
self._sizes = sizes
def __call__(self, data: numpy.ndarray, test):
data = data.T
lens = [self._sizes[t] for t in self._targets]
assert data.shape[1] == sum(lens)
d = defaultdict(lambda: numpy.nan, **{
t: data[:, bef:aft]
for t, bef, aft in zip(self._targets, [0] + lens[:-1], lens)
})
return AcousticFeature(
f0=d['f0'],
spectrogram=d['spectrogram'],
aperiodicity=d['aperiodicity'],
mfcc=d['mfcc'],
voiced=d['voiced'],
)
class ShapeAlignProcess(BaseDataProcess):
def __call__(self, data, test):
data1, data2, data3 = data['input'], data['target'], data['mask']
m = max(data1.shape[1], data2.shape[1], data3.shape[1])
data1 = numpy.pad(data1, ((0, 0), (0, m - data1.shape[1])), mode='constant')
data2 = numpy.pad(data2, ((0, 0), (0, m - data2.shape[1])), mode='constant')
data3 = numpy.pad(data3, ((0, 0), (0, m - data3.shape[1])), mode='constant')
data['input'], data['target'], data['mask'] = data1, data2, data3
return data
class CropProcess(BaseDataProcess):
def __init__(self, crop_size: int, time_axis: int = 1):
self._crop_size = crop_size
self._time_axis = time_axis
def __call__(self, datas: Dict[str, any], test=True):
assert not test
data, seed = datas['data'], datas['seed']
random = numpy.random.RandomState(seed)
len_time = data.shape[self._time_axis]
assert len_time >= self._crop_size
start = random.randint(len_time - self._crop_size + 1)
return numpy.split(data, [start, start + self._crop_size], axis=self._time_axis)[1]
class DataProcessDataset(chainer.dataset.DatasetMixin):
def __init__(self, data: typing.List, data_process: BaseDataProcess):
self._data = data
self._data_process = data_process
def __len__(self):
return len(self._data)
def get_example(self, i):
return self._data_process(data=self._data[i], test=not chainer.config.train)
def create(config: DatasetConfig):
import glob
input_paths = list(sorted([Path(p) for p in glob.glob(str(config.input_glob))]))
target_paths = list(sorted([Path(p) for p in glob.glob(str(config.target_glob))]))
assert len(input_paths) == len(target_paths)
acoustic_feature_load_process = AcousticFeatureLoadProcess()
input_mean = acoustic_feature_load_process(config.input_mean_path, test=True)
input_var = acoustic_feature_load_process(config.input_var_path, test=True)
target_mean = acoustic_feature_load_process(config.target_mean_path, test=True)
target_var = acoustic_feature_load_process(config.target_var_path, test=True)
# {input_path, target_path}
data_process_base = ChainProcess([
SplitProcess(dict(
input=ChainProcess([
LambdaProcess(lambda d, test: d['input_path']),
acoustic_feature_load_process,
DistillateUsingFeatureProcess(config.features + ['voiced']),
AcousticFeatureNormalizeProcess(mean=input_mean, var=input_var),
EncodeFeatureProcess(config.features),
]),
target=ChainProcess([
LambdaProcess(lambda d, test: d['target_path']),
acoustic_feature_load_process,
DistillateUsingFeatureProcess(config.features + ['voiced']),
AcousticFeatureNormalizeProcess(mean=target_mean, var=target_var),
SplitProcess(dict(
feature=EncodeFeatureProcess(config.features),
mask=ChainProcess([
MakeMaskProcess(),
EncodeFeatureProcess(config.features),
])
)),
]),
)),
LambdaProcess(lambda d, test: dict(input=d['input'], target=d['target']['feature'], mask=d['target']['mask'])),
ShapeAlignProcess(),
])
data_process_train = copy.deepcopy(data_process_base)
if config.train_crop_size is not None:
data_process_train.append(ChainProcess([
LambdaProcess(lambda d, test: dict(seed=numpy.random.randint(2 ** 32), **d)),
SplitProcess(dict(
input=ChainProcess([
LambdaProcess(lambda d, test: dict(data=d['input'], seed=d['seed'])),
CropProcess(crop_size=config.train_crop_size),
]),
target=ChainProcess([
LambdaProcess(lambda d, test: dict(data=d['target'], seed=d['seed'])),
CropProcess(crop_size=config.train_crop_size),
]),
mask=ChainProcess([
LambdaProcess(lambda d, test: dict(data=d['mask'], seed=d['seed'])),
CropProcess(crop_size=config.train_crop_size),
]),
)),
]))
data_process_test = data_process_base
num_test = config.num_test
pairs = [
dict(input_path=input_path, target_path=target_path)
for input_path, target_path in zip(input_paths, target_paths)
]
numpy.random.RandomState(config.seed).shuffle(pairs)
train_paths = pairs[num_test:]
test_paths = pairs[:num_test]
train_for_evaluate_paths = train_paths[:num_test]
return {
'train': DataProcessDataset(train_paths, data_process_train),
'test': DataProcessDataset(test_paths, data_process_test),
'train_eval': DataProcessDataset(train_for_evaluate_paths, data_process_test),
}
|