summaryrefslogtreecommitdiff
path: root/become_yukarin/dataset/dataset.py
blob: 7a6ce08df905f36b81f3bfaa0684a75b91ee2e70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import typing
from abc import ABCMeta, abstractmethod
from pathlib import Path
from typing import Callable
from typing import Dict
from typing import List

import chainer
import librosa
import numpy
import pysptk
import pyworld

from ..config import DatasetConfig
from ..data_struct import AcousticFeature
from ..data_struct import Wave


class BaseDataProcess(metaclass=ABCMeta):
    @abstractmethod
    def __call__(self, data, test):
        pass


class LambdaProcess(BaseDataProcess):
    def __init__(self, process: Callable[[any, bool], any]):
        self._process = process

    def __call__(self, data, test):
        return self._process(data, test)


class DictKeyReplaceProcess(BaseDataProcess):
    def __init__(self, key_map: Dict[str, str]):
        self._key_map = key_map

    def __call__(self, data: Dict[str, any], test):
        return {key_after: data[key_before] for key_after, key_before in self._key_map}


class ChainProcess(BaseDataProcess):
    def __init__(self, process: typing.Iterable[BaseDataProcess]):
        self._process = process

    def __call__(self, data, test):
        for p in self._process:
            data = p(data, test)
        return data


class SplitProcess(BaseDataProcess):
    def __init__(self, process: typing.Dict[str, typing.Optional[BaseDataProcess]]):
        self._process = process

    def __call__(self, data, test):
        data = {
            k: p(data, test) if p is not None else data
            for k, p in self._process.items()
        }
        return data


class WaveFileLoadProcess(BaseDataProcess):
    def __init__(self, sample_rate: int, top_db: float, dtype=numpy.float32):
        self._sample_rate = sample_rate
        self._top_db = top_db
        self._dtype = dtype

    def __call__(self, data: str, test):
        wave = librosa.core.load(data, sr=self._sample_rate, dtype=self._dtype)[0]
        wave = librosa.effects.remix(wave, intervals=librosa.effects.split(wave, top_db=self._top_db))
        return Wave(wave, self._sample_rate)


class AcousticFeatureProcess(BaseDataProcess):
    def __init__(self, frame_period, order, alpha, dtype=numpy.float32):
        self._frame_period = frame_period
        self._order = order
        self._alpha = alpha
        self._dtype = dtype

    def __call__(self, data: Wave, test):
        x = data.wave.astype(numpy.float64)
        fs = data.sampling_rate

        _f0, t = pyworld.dio(x, fs, frame_period=self._frame_period)
        f0 = pyworld.stonemask(x, _f0, t, fs)
        spectrogram = pyworld.cheaptrick(x, f0, t, fs)
        aperiodicity = pyworld.d4c(x, f0, t, fs)
        mfcc = pysptk.sp2mc(spectrogram, order=self._order, alpha=self._alpha)
        return AcousticFeature(
            f0=f0.astype(self._dtype),
            spectrogram=spectrogram.astype(self._dtype),
            aperiodicity=aperiodicity.astype(self._dtype),
            mfcc=mfcc.astype(self._dtype),
        )


class AcousticFeatureLoadProcess(BaseDataProcess):
    def __init__(self):
        pass

    def __call__(self, path: Path, test):
        d = numpy.load(path).item()  # type: dict
        return AcousticFeature(
            f0=d['f0'],
            spectrogram=d['spectrogram'],
            aperiodicity=d['aperiodicity'],
            mfcc=d['mfcc'],
        )


class AcousticFeatureNormalizeProcess(BaseDataProcess):
    def __init__(self, mean: AcousticFeature, var: AcousticFeature):
        self._mean = mean
        self._var = var

    def __call__(self, data: AcousticFeature, test):
        return AcousticFeature(
            f0=(data.f0 - self._mean.f0) / numpy.sqrt(self._var.f0),
            spectrogram=(data.spectrogram - self._mean.spectrogram) / numpy.sqrt(self._var.spectrogram),
            aperiodicity=(data.aperiodicity - self._mean.aperiodicity) / numpy.sqrt(self._var.aperiodicity),
            mfcc=(data.mfcc - self._mean.mfcc) / numpy.sqrt(self._var.mfcc),
        )


class AcousticFeatureDenormalizeProcess(BaseDataProcess):
    def __init__(self, mean: AcousticFeature, var: AcousticFeature):
        self._mean = mean
        self._var = var

    def __call__(self, data: AcousticFeature, test):
        return AcousticFeature(
            f0=data.f0 * numpy.sqrt(self._var.f0) + self._mean.f0,
            spectrogram=data.spectrogram * numpy.sqrt(self._var.spectrogram) + self._mean.spectrogram,
            aperiodicity=data.aperiodicity * numpy.sqrt(self._var.aperiodicity) + self._mean.aperiodicity,
            mfcc=data.mfcc * numpy.sqrt(self._var.mfcc) + self._mean.mfcc,
        )


class EncodeFeatureProcess(BaseDataProcess):
    def __init__(self, targets: List[str]):
        self._targets = targets

    def __call__(self, data: AcousticFeature, test):
        feature = numpy.concatenate([getattr(data, t) for t in self._targets])
        feature = feature.T
        return feature


class DecodeFeatureProcess(BaseDataProcess):
    def __init__(self, targets: List[str]):
        self._targets = targets

    def __call__(self, data: numpy.ndarray, test):
        # TODO: implement for other features
        data = data.T
        return AcousticFeature(
            f0=numpy.nan,
            spectrogram=numpy.nan,
            aperiodicity=numpy.nan,
            mfcc=data,
        )


class ShapeAlignProcess(BaseDataProcess):
    def __call__(self, data, test):
        data1, data2 = data['input'], data['target']
        m = max(data1.shape[1], data2.shape[1])
        data1 = numpy.pad(data1, ((0, 0), (0, m - data1.shape[1])), mode='constant')
        data2 = numpy.pad(data2, ((0, 0), (0, m - data2.shape[1])), mode='constant')
        data['input'], data['target'] = data1, data2
        return data


class DataProcessDataset(chainer.dataset.DatasetMixin):
    def __init__(self, data: typing.List, data_process: BaseDataProcess):
        self._data = data
        self._data_process = data_process

    def __len__(self):
        return len(self._data)

    def get_example(self, i):
        return self._data_process(data=self._data[i], test=not chainer.config.train)


def create(config: DatasetConfig):
    import glob
    input_paths = list(sorted([Path(p) for p in glob.glob(config.input_glob)]))
    target_paths = list(sorted([Path(p) for p in glob.glob(config.target_glob)]))
    assert len(input_paths) == len(target_paths)

    acoustic_feature_load_process = AcousticFeatureLoadProcess()
    input_mean = acoustic_feature_load_process(config.input_mean_path, test=True)
    input_var = acoustic_feature_load_process(config.input_var_path, test=True)
    target_mean = acoustic_feature_load_process(config.target_mean_path, test=True)
    target_var = acoustic_feature_load_process(config.target_var_path, test=True)

    # {input_path, target_path}
    data_process = ChainProcess([
        SplitProcess(dict(
            input=ChainProcess([
                LambdaProcess(lambda d, test: d['input_path']),
                acoustic_feature_load_process,
                AcousticFeatureNormalizeProcess(mean=input_mean, var=input_var),
                EncodeFeatureProcess(['mfcc']),
            ]),
            target=ChainProcess([
                LambdaProcess(lambda d, test: d['target_path']),
                acoustic_feature_load_process,
                AcousticFeatureNormalizeProcess(mean=target_mean, var=target_var),
                EncodeFeatureProcess(['mfcc']),
            ]),
        )),
        ShapeAlignProcess(),
    ])

    num_test = config.num_test
    pairs = [
        dict(input_path=input_path, target_path=target_path)
        for input_path, target_path in zip(input_paths, target_paths)
    ]
    numpy.random.RandomState(config.seed).shuffle(pairs)
    train_paths = pairs[num_test:]
    test_paths = pairs[:num_test]
    train_for_evaluate_paths = train_paths[:num_test]

    return {
        'train': DataProcessDataset(train_paths, data_process),
        'test': DataProcessDataset(test_paths, data_process),
        'train_eval': DataProcessDataset(train_for_evaluate_paths, data_process),
    }