1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
import json
from pathlib import Path
from typing import Dict
from typing import List
from typing import NamedTuple
from typing import Union
from become_yukarin.param import Param
class SRDatasetConfig(NamedTuple):
param: Param
input_glob: Path
train_crop_size: int
input_global_noise: float
input_local_noise: float
blur_size_factor: float
seed: int
num_test: int
class SRModelConfig(NamedTuple):
generator_base_channels: int
generator_extensive_layers: int
discriminator_base_channels: int
discriminator_extensive_layers: int
class SRLossConfig(NamedTuple):
mse: float
adversarial: float
class SRTrainConfig(NamedTuple):
batchsize: int
gpu: int
log_iteration: int
snapshot_iteration: int
class SRProjectConfig(NamedTuple):
name: str
tags: List[str]
class SRConfig(NamedTuple):
dataset: SRDatasetConfig
model: SRModelConfig
loss: SRLossConfig
train: SRTrainConfig
project: SRProjectConfig
def save_as_json(self, path):
d = _namedtuple_to_dict(self)
json.dump(d, open(path, 'w'), indent=2, sort_keys=True, default=_default_path)
def _default_path(o):
if isinstance(o, Path):
return str(o)
raise TypeError(repr(o) + " is not JSON serializable")
def _namedtuple_to_dict(o: NamedTuple):
return {
k: v if not hasattr(v, '_asdict') else _namedtuple_to_dict(v)
for k, v in o._asdict().items()
}
def create_from_json(s: Union[str, Path]):
try:
d = json.loads(s)
except TypeError:
d = json.load(open(s))
backward_compatible(d)
return SRConfig(
dataset=SRDatasetConfig(
param=Param(),
input_glob=Path(d['dataset']['input_glob']),
train_crop_size=d['dataset']['train_crop_size'],
input_global_noise=d['dataset']['input_global_noise'],
input_local_noise=d['dataset']['input_local_noise'],
blur_size_factor=d['dataset']['blur_size_factor'],
seed=d['dataset']['seed'],
num_test=d['dataset']['num_test'],
),
model=SRModelConfig(
generator_base_channels=d['model']['generator_base_channels'],
generator_extensive_layers=d['model']['generator_extensive_layers'],
discriminator_base_channels=d['model']['discriminator_base_channels'],
discriminator_extensive_layers=d['model']['discriminator_extensive_layers'],
),
loss=SRLossConfig(
mse=d['loss']['mse'],
adversarial=d['loss']['adversarial'],
),
train=SRTrainConfig(
batchsize=d['train']['batchsize'],
gpu=d['train']['gpu'],
log_iteration=d['train']['log_iteration'],
snapshot_iteration=d['train']['snapshot_iteration'],
),
project=SRProjectConfig(
name=d['project']['name'],
tags=d['project']['tags'],
)
)
def backward_compatible(d: Dict):
if 'blur_size_factor' not in d['dataset']:
d['dataset']['blur_size_factor'] = 0
|