summaryrefslogtreecommitdiff
path: root/become_yukarin/config/sr_config.py
blob: 4f980a219dccf52c4e89a9512aca51ff8e41780f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import json
from pathlib import Path
from typing import Dict
from typing import List
from typing import NamedTuple
from typing import Union

from become_yukarin.param import Param


class SRDatasetConfig(NamedTuple):
    param: Param
    input_glob: Path
    train_crop_size: int
    input_global_noise: float
    input_local_noise: float
    blur_size_factor: float
    seed: int
    num_test: int


class SRModelConfig(NamedTuple):
    pass


class SRLossConfig(NamedTuple):
    mse: float
    adversarial: float


class SRTrainConfig(NamedTuple):
    batchsize: int
    gpu: int
    log_iteration: int
    snapshot_iteration: int


class SRProjectConfig(NamedTuple):
    name: str
    tags: List[str]


class SRConfig(NamedTuple):
    dataset: SRDatasetConfig
    model: SRModelConfig
    loss: SRLossConfig
    train: SRTrainConfig
    project: SRProjectConfig

    def save_as_json(self, path):
        d = _namedtuple_to_dict(self)
        json.dump(d, open(path, 'w'), indent=2, sort_keys=True, default=_default_path)


def _default_path(o):
    if isinstance(o, Path):
        return str(o)
    raise TypeError(repr(o) + " is not JSON serializable")


def _namedtuple_to_dict(o: NamedTuple):
    return {
        k: v if not hasattr(v, '_asdict') else _namedtuple_to_dict(v)
        for k, v in o._asdict().items()
    }


def create_from_json(s: Union[str, Path]):
    try:
        d = json.loads(s)
    except TypeError:
        d = json.load(open(s))

    backward_compatible(d)

    return SRConfig(
        dataset=SRDatasetConfig(
            param=Param(),
            input_glob=Path(d['dataset']['input_glob']),
            train_crop_size=d['dataset']['train_crop_size'],
            input_global_noise=d['dataset']['input_global_noise'],
            input_local_noise=d['dataset']['input_local_noise'],
            blur_size_factor=d['dataset']['blur_size_factor'],
            seed=d['dataset']['seed'],
            num_test=d['dataset']['num_test'],
        ),
        model=SRModelConfig(
        ),
        loss=SRLossConfig(
            mse=d['loss']['mse'],
            adversarial=d['loss']['adversarial'],
        ),
        train=SRTrainConfig(
            batchsize=d['train']['batchsize'],
            gpu=d['train']['gpu'],
            log_iteration=d['train']['log_iteration'],
            snapshot_iteration=d['train']['snapshot_iteration'],
        ),
        project=SRProjectConfig(
            name=d['project']['name'],
            tags=d['project']['tags'],
        )
    )


def backward_compatible(d: Dict):
    if 'blur_size_factor' not in d['dataset']:
        d['dataset']['blur_size_factor'] = 0