1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
import json
from pathlib import Path
from typing import Dict
from typing import List
from typing import NamedTuple
from typing import Optional
from typing import Union
from become_yukarin.param import Param
class DatasetConfig(NamedTuple):
param: Param
input_glob: Path
target_glob: Path
input_mean_path: Path
input_var_path: Path
target_mean_path: Path
target_var_path: Path
features: List[str]
train_crop_size: int
input_global_noise: float
input_local_noise: float
target_global_noise: float
target_local_noise: float
seed: int
num_test: int
class ModelConfig(NamedTuple):
in_channels: int
out_channels: int
class LossConfig(NamedTuple):
mse: float
adversarial: float
class TrainConfig(NamedTuple):
batchsize: int
gpu: int
log_iteration: int
snapshot_iteration: int
class ProjectConfig(NamedTuple):
name: str
tags: List[str]
class Config(NamedTuple):
dataset: DatasetConfig
model: ModelConfig
loss: LossConfig
train: TrainConfig
project: ProjectConfig
def save_as_json(self, path):
d = _namedtuple_to_dict(self)
json.dump(d, open(path, 'w'), indent=2, sort_keys=True, default=_default_path)
def _default_path(o):
if isinstance(o, Path):
return str(o)
raise TypeError(repr(o) + " is not JSON serializable")
def _namedtuple_to_dict(o: NamedTuple):
return {
k: v if not hasattr(v, '_asdict') else _namedtuple_to_dict(v)
for k, v in o._asdict().items()
}
def create_from_json(s: Union[str, Path]):
try:
d = json.loads(s)
except TypeError:
d = json.load(open(s))
backward_compatible(d)
return Config(
dataset=DatasetConfig(
param=Param(),
input_glob=Path(d['dataset']['input_glob']),
target_glob=Path(d['dataset']['target_glob']),
input_mean_path=Path(d['dataset']['input_mean_path']),
input_var_path=Path(d['dataset']['input_var_path']),
target_mean_path=Path(d['dataset']['target_mean_path']),
target_var_path=Path(d['dataset']['target_var_path']),
features=d['dataset']['features'],
train_crop_size=d['dataset']['train_crop_size'],
input_global_noise=d['dataset']['input_global_noise'],
input_local_noise=d['dataset']['input_local_noise'],
target_global_noise=d['dataset']['target_global_noise'],
target_local_noise=d['dataset']['target_local_noise'],
seed=d['dataset']['seed'],
num_test=d['dataset']['num_test'],
),
model=ModelConfig(
in_channels=d['model']['in_channels'],
out_channels=d['model']['out_channels'],
),
loss=LossConfig(
mse=d['loss']['mse'],
adversarial=d['loss']['adversarial'],
),
train=TrainConfig(
batchsize=d['train']['batchsize'],
gpu=d['train']['gpu'],
log_iteration=d['train']['log_iteration'],
snapshot_iteration=d['train']['snapshot_iteration'],
),
project=ProjectConfig(
name=d['project']['name'],
tags=d['project']['tags'],
)
)
def backward_compatible(d: Dict):
if 'input_global_noise' not in d['dataset']:
d['dataset']['input_global_noise'] = d['dataset']['global_noise']
d['dataset']['input_local_noise'] = d['dataset']['local_noise']
if 'target_global_noise' not in d['dataset']:
d['dataset']['target_global_noise'] = d['dataset']['global_noise']
d['dataset']['target_local_noise'] = d['dataset']['local_noise']
|