summaryrefslogtreecommitdiff
path: root/become_yukarin/config.py
blob: 0efbf0432adf45d9ee9a90716591cd198a211285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import json
from pathlib import Path
from typing import List
from typing import NamedTuple
from typing import Union

from .param import Param


class DatasetConfig(NamedTuple):
    param: Param
    input_glob: Path
    target_glob: Path
    input_mean_path: Path
    input_var_path: Path
    target_mean_path: Path
    target_var_path: Path
    features: List[str]
    train_crop_size: int
    global_noise: float
    local_noise: float
    seed: int
    num_test: int


class ModelConfig(NamedTuple):
    in_channels: int
    conv_bank_out_channels: int
    conv_bank_k: int
    max_pooling_k: int
    conv_projections_hidden_channels: int
    highway_layers: int
    out_channels: int
    out_size: int
    aligner_out_time_length: int
    disable_last_rnn: bool
    enable_aligner: bool


class LossConfig(NamedTuple):
    l1: float


class TrainConfig(NamedTuple):
    batchsize: int
    gpu: int
    log_iteration: int
    snapshot_iteration: int


class Config(NamedTuple):
    dataset: DatasetConfig
    model: ModelConfig
    loss: LossConfig
    train: TrainConfig

    def save_as_json(self, path):
        d = _namedtuple_to_dict(self)
        json.dump(d, open(path, 'w'), indent=2, sort_keys=True, default=_default_path)


def _default_path(o):
    if isinstance(o, Path):
        return str(o)
    raise TypeError(repr(o) + " is not JSON serializable")


def _namedtuple_to_dict(o: NamedTuple):
    return {
        k: v if not hasattr(v, '_asdict') else _namedtuple_to_dict(v)
        for k, v in o._asdict().items()
    }


def create_from_json(s: Union[str, Path]):
    try:
        d = json.loads(s)
    except TypeError:
        d = json.load(open(s))

    return Config(
        dataset=DatasetConfig(
            param=Param(),
            input_glob=Path(d['dataset']['input_glob']).expanduser(),
            target_glob=Path(d['dataset']['target_glob']).expanduser(),
            input_mean_path=Path(d['dataset']['input_mean_path']).expanduser(),
            input_var_path=Path(d['dataset']['input_var_path']).expanduser(),
            target_mean_path=Path(d['dataset']['target_mean_path']).expanduser(),
            target_var_path=Path(d['dataset']['target_var_path']).expanduser(),
            features=d['dataset']['features'],
            train_crop_size=d['dataset']['train_crop_size'],
            global_noise=d['dataset']['global_noise'],
            local_noise=d['dataset']['local_noise'],
            seed=d['dataset']['seed'],
            num_test=d['dataset']['num_test'],
        ),
        model=ModelConfig(
            in_channels=d['model']['in_channels'],
            conv_bank_out_channels=d['model']['conv_bank_out_channels'],
            conv_bank_k=d['model']['conv_bank_k'],
            max_pooling_k=d['model']['max_pooling_k'],
            conv_projections_hidden_channels=d['model']['conv_projections_hidden_channels'],
            highway_layers=d['model']['highway_layers'],
            out_channels=d['model']['out_channels'],
            out_size=d['model']['out_size'],
            aligner_out_time_length=d['model']['aligner_out_time_length'],
            disable_last_rnn=d['model']['disable_last_rnn'],
            enable_aligner=d['model']['enable_aligner'],
        ),
        loss=LossConfig(
            l1=d['loss']['l1'],
        ),
        train=TrainConfig(
            batchsize=d['train']['batchsize'],
            gpu=d['train']['gpu'],
            log_iteration=d['train']['log_iteration'],
            snapshot_iteration=d['train']['snapshot_iteration'],
        ),
    )