summaryrefslogtreecommitdiff
path: root/become_yukarin/config.py
blob: ecfcfab791a5872b3f7e884a318c8e05f5153861 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import json
from pathlib import Path
from typing import NamedTuple
from typing import Union

from .param import Param


class DatasetConfig(NamedTuple):
    param: Param
    input_glob: str
    target_glob: str
    input_mean_path: Path
    input_var_path: Path
    target_mean_path: Path
    target_var_path: Path
    seed: int
    num_test: int


class ModelConfig(NamedTuple):
    in_size: int
    num_scale: int
    base_num_z: int
    out_size: int


class LossConfig(NamedTuple):
    l1: float


class TrainConfig(NamedTuple):
    batchsize: int
    gpu: int
    log_iteration: int
    snapshot_iteration: int
    output: Path


class Config(NamedTuple):
    dataset: DatasetConfig
    model: ModelConfig
    loss: LossConfig
    train: TrainConfig

    def save_as_json(self, path):
        d = _namedtuple_to_dict(self)
        json.dump(d, open(path, 'w'), indent=2, sort_keys=True, default=_default_path)


def _default_path(o):
    if isinstance(o, Path):
        return str(o)
    raise TypeError(repr(o) + " is not JSON serializable")


def _namedtuple_to_dict(o: NamedTuple):
    return {
        k: v if not hasattr(v, '_asdict') else _namedtuple_to_dict(v)
        for k, v in o._asdict().items()
    }


def create_from_json(s: Union[str, Path]):
    try:
        d = json.loads(s)
    except TypeError:
        d = json.load(open(s))

    return Config(
        dataset=DatasetConfig(
            param=Param(),
            input_glob=d['dataset']['input_glob'],
            target_glob=d['dataset']['target_glob'],
            input_mean_path=Path(d['dataset']['input_mean_path']).expanduser(),
            input_var_path=Path(d['dataset']['input_var_path']).expanduser(),
            target_mean_path=Path(d['dataset']['target_mean_path']).expanduser(),
            target_var_path=Path(d['dataset']['target_var_path']).expanduser(),
            seed=d['dataset']['seed'],
            num_test=d['dataset']['num_test'],
        ),
        model=ModelConfig(
            in_size=d['model']['in_size'],
            num_scale=d['model']['num_scale'],
            base_num_z=d['model']['base_num_z'],
            out_size=d['model']['out_size'],
        ),
        loss=LossConfig(
            l1=d['loss']['l1'],
        ),
        train=TrainConfig(
            batchsize=d['train']['batchsize'],
            gpu=d['train']['gpu'],
            log_iteration=d['train']['log_iteration'],
            snapshot_iteration=d['train']['snapshot_iteration'],
            output=Path(d['train']['output']).expanduser(),
        ),
    )