1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
import json
from pathlib import Path
from typing import List
from typing import NamedTuple
from typing import Union
from .param import Param
class DatasetConfig(NamedTuple):
param: Param
input_glob: Path
target_glob: Path
input_mean_path: Path
input_var_path: Path
target_mean_path: Path
target_var_path: Path
features: List[str]
train_crop_size: int
global_noise: float
local_noise: float
seed: int
num_test: int
class DiscriminatorModelConfig(NamedTuple):
in_channels: int
hidden_channels_list: List[int]
last_channels: int
class ModelConfig(NamedTuple):
in_channels: int
conv_bank_out_channels: int
conv_bank_k: int
max_pooling_k: int
conv_projections_hidden_channels: int
highway_layers: int
out_channels: int
out_size: int
aligner_out_time_length: int
disable_last_rnn: bool
enable_aligner: bool
discriminator: DiscriminatorModelConfig
class LossConfig(NamedTuple):
l1: float
predictor_fake: float
discriminator_true: float
discriminator_fake: float
discriminator_grad: float
class TrainConfig(NamedTuple):
batchsize: int
gpu: int
log_iteration: int
snapshot_iteration: int
class ProjectConfig(NamedTuple):
name: str
tags: List[str]
class Config(NamedTuple):
dataset: DatasetConfig
model: ModelConfig
loss: LossConfig
train: TrainConfig
project: ProjectConfig
def save_as_json(self, path):
d = _namedtuple_to_dict(self)
json.dump(d, open(path, 'w'), indent=2, sort_keys=True, default=_default_path)
def _default_path(o):
if isinstance(o, Path):
return str(o)
raise TypeError(repr(o) + " is not JSON serializable")
def _namedtuple_to_dict(o: NamedTuple):
return {
k: v if not hasattr(v, '_asdict') else _namedtuple_to_dict(v)
for k, v in o._asdict().items()
}
def create_from_json(s: Union[str, Path]):
try:
d = json.loads(s)
except TypeError:
d = json.load(open(s))
discriminator_model_config = DiscriminatorModelConfig(
in_channels=d['model']['discriminator']['in_channels'],
hidden_channels_list=d['model']['discriminator']['hidden_channels_list'],
last_channels=d['model']['discriminator']['last_channels'],
)
return Config(
dataset=DatasetConfig(
param=Param(),
input_glob=Path(d['dataset']['input_glob']),
target_glob=Path(d['dataset']['target_glob']),
input_mean_path=Path(d['dataset']['input_mean_path']),
input_var_path=Path(d['dataset']['input_var_path']),
target_mean_path=Path(d['dataset']['target_mean_path']),
target_var_path=Path(d['dataset']['target_var_path']),
features=d['dataset']['features'],
train_crop_size=d['dataset']['train_crop_size'],
global_noise=d['dataset']['global_noise'],
local_noise=d['dataset']['local_noise'],
seed=d['dataset']['seed'],
num_test=d['dataset']['num_test'],
),
model=ModelConfig(
in_channels=d['model']['in_channels'],
conv_bank_out_channels=d['model']['conv_bank_out_channels'],
conv_bank_k=d['model']['conv_bank_k'],
max_pooling_k=d['model']['max_pooling_k'],
conv_projections_hidden_channels=d['model']['conv_projections_hidden_channels'],
highway_layers=d['model']['highway_layers'],
out_channels=d['model']['out_channels'],
out_size=d['model']['out_size'],
aligner_out_time_length=d['model']['aligner_out_time_length'],
disable_last_rnn=d['model']['disable_last_rnn'],
enable_aligner=d['model']['enable_aligner'],
discriminator=discriminator_model_config,
),
loss=LossConfig(
l1=d['loss']['l1'],
predictor_fake=d['loss']['predictor_fake'],
discriminator_true=d['loss']['discriminator_true'],
discriminator_fake=d['loss']['discriminator_fake'],
discriminator_grad=d['loss']['discriminator_grad'],
),
train=TrainConfig(
batchsize=d['train']['batchsize'],
gpu=d['train']['gpu'],
log_iteration=d['train']['log_iteration'],
snapshot_iteration=d['train']['snapshot_iteration'],
),
project=ProjectConfig(
name=d['project']['name'],
tags=d['project']['tags'],
)
)
|