diff options
Diffstat (limited to 'become_yukarin/updater.py')
| -rw-r--r-- | become_yukarin/updater.py | 77 |
1 files changed, 77 insertions, 0 deletions
diff --git a/become_yukarin/updater.py b/become_yukarin/updater.py new file mode 100644 index 0000000..927601f --- /dev/null +++ b/become_yukarin/updater.py @@ -0,0 +1,77 @@ +import chainer +import numpy +from chainer import reporter + +from .config import LossConfig +from .config import ModelConfig +from .model import Aligner +from .model import Discriminator +from .model import Predictor + + +class Updater(chainer.training.StandardUpdater): + def __init__( + self, + loss_config: LossConfig, + model_config: ModelConfig, + predictor: Predictor, + aligner: Aligner = None, + discriminator: Discriminator = None, + *args, + **kwargs, + ): + super().__init__(*args, **kwargs) + self.loss_config = loss_config + self.model_config = model_config + self.predictor = predictor + self.aligner = aligner + self.discriminator = discriminator + + def forward(self, input, target, mask): + xp = self.predictor.xp + + input = chainer.as_variable(input) + target = chainer.as_variable(target) + mask = chainer.as_variable(mask) + + if self.aligner is not None: + input = self.aligner(input) + y = self.predictor(input) + + loss_l1 = chainer.functions.sum(chainer.functions.absolute_error(y, target) * mask) + loss_l1 = loss_l1 / chainer.functions.sum(mask) + reporter.report({'l1': loss_l1}, self.predictor) + + if self.discriminator is not None: + pair_fake = chainer.functions.concat([y * mask, input]) + pair_true = chainer.functions.concat([target * mask, input]) + d_fake = self.discriminator(pair_fake) + d_true = self.discriminator(pair_true) + loss_dis_f = chainer.functions.mean_squared_error(d_fake, xp.zeros_like(d_fake.data, numpy.float32)) + loss_dis_t = chainer.functions.mean_squared_error(d_true, xp.ones_like(d_true.data, numpy.float32)) + loss_gen_f = chainer.functions.mean_squared_error(d_fake, xp.ones_like(d_fake.data, numpy.float32)) + reporter.report({'fake': loss_dis_f}, self.discriminator) + reporter.report({'true': loss_dis_t}, self.discriminator) + + loss = {'predictor': loss_l1 * self.loss_config.l1} + + if self.aligner is not None: + loss['aligner'] = loss_l1 * self.loss_config.l1 + reporter.report({'loss': loss['aligner']}, self.aligner) + + if self.discriminator is not None: + loss['discriminator'] = \ + loss_dis_f * self.loss_config.discriminator_fake + \ + loss_dis_t * self.loss_config.discriminator_true + reporter.report({'loss': loss['discriminator']}, self.discriminator) + loss['predictor'] += loss_gen_f * self.loss_config.predictor_fake + + reporter.report({'loss': loss['predictor']}, self.predictor) + return loss + + def update_core(self): + batch = self.get_iterator('main').next() + loss = self.forward(**self.converter(batch, self.device)) + + for k, opt in self.get_all_optimizers().items(): + opt.update(loss.get, k) |
