diff options
Diffstat (limited to 'become_yukarin/model/sr_model.py')
| -rw-r--r-- | become_yukarin/model/sr_model.py | 119 |
1 files changed, 119 insertions, 0 deletions
diff --git a/become_yukarin/model/sr_model.py b/become_yukarin/model/sr_model.py new file mode 100644 index 0000000..74119a4 --- /dev/null +++ b/become_yukarin/model/sr_model.py @@ -0,0 +1,119 @@ +import chainer +import chainer.functions as F +import chainer.links as L + +from become_yukarin.config.sr_config import SRModelConfig + + +class CBR(chainer.Chain): + def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False): + super().__init__() + self.bn = bn + self.activation = activation + self.dropout = dropout + + w = chainer.initializers.Normal(0.02) + with self.init_scope(): + if sample == 'down': + self.c = L.Convolution2D(ch0, ch1, 4, 2, 1, initialW=w) + else: + self.c = L.Deconvolution2D(ch0, ch1, 4, 2, 1, initialW=w) + if bn: + self.batchnorm = L.BatchNormalization(ch1) + + def __call__(self, x): + h = self.c(x) + if self.bn: + h = self.batchnorm(h) + if self.dropout: + h = F.dropout(h) + if self.activation is not None: + h = self.activation(h) + return h + + +class Encoder(chainer.Chain): + def __init__(self, in_ch): + super().__init__() + w = chainer.initializers.Normal(0.02) + with self.init_scope(): + self.c0 = L.Convolution2D(in_ch, 64, 3, 1, 1, initialW=w) + self.c1 = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + self.c2 = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + self.c3 = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + self.c4 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + self.c5 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + self.c6 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + self.c7 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + + def __call__(self, x): + x = F.reshape(x, (len(x), 1) + x.shape[1:]) + hs = [F.leaky_relu(self.c0(x))] + for i in range(1, 8): + hs.append(self['c%d' % i](hs[i - 1])) + return hs + + +class Decoder(chainer.Chain): + def __init__(self, out_ch): + super().__init__() + w = chainer.initializers.Normal(0.02) + with self.init_scope(): + self.c0 = CBR(512, 512, bn=True, sample='up', activation=F.relu, dropout=True) + self.c1 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=True) + self.c2 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=True) + self.c3 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=False) + self.c4 = CBR(1024, 256, bn=True, sample='up', activation=F.relu, dropout=False) + self.c5 = CBR(512, 128, bn=True, sample='up', activation=F.relu, dropout=False) + self.c6 = CBR(256, 64, bn=True, sample='up', activation=F.relu, dropout=False) + self.c7 = L.Convolution2D(128, out_ch, 3, 1, 1, initialW=w) + + def __call__(self, hs): + h = self.c0(hs[-1]) + for i in range(1, 8): + h = F.concat([h, hs[-i - 1]]) + if i < 7: + h = self['c%d' % i](h) + else: + h = self.c7(h) + return h + + +class SRPredictor(chainer.Chain): + def __init__(self, in_ch, out_ch): + super().__init__() + with self.init_scope(): + self.encoder = Encoder(in_ch) + self.decoder = Decoder(out_ch) + + def __call__(self, x): + return self.decoder(self.encoder(x)) + + +class SRDiscriminator(chainer.Chain): + def __init__(self, in_ch, out_ch): + super().__init__() + w = chainer.initializers.Normal(0.02) + with self.init_scope(): + self.c0_0 = CBR(in_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False) + self.c0_1 = CBR(out_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False) + self.c1 = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + self.c2 = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + self.c3 = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False) + self.c4 = L.Convolution2D(512, 1, 3, 1, 1, initialW=w) + + def __call__(self, x_0, x_1): + x_0 = F.reshape(x_0, (len(x_0), 1) + x_0.shape[1:]) + h = F.concat([self.c0_0(x_0), self.c0_1(x_1)]) + h = self.c1(h) + h = self.c2(h) + h = self.c3(h) + h = self.c4(h) + # h = F.average_pooling_2d(h, h.data.shape[2], 1, 0) + return h + + +def create_sr(config: SRModelConfig): + predictor = SRPredictor(in_ch=1, out_ch=3) + discriminator = SRDiscriminator(in_ch=1, out_ch=3) + return predictor, discriminator |
