summaryrefslogtreecommitdiff
path: root/become_yukarin/model/sr_model.py
diff options
context:
space:
mode:
Diffstat (limited to 'become_yukarin/model/sr_model.py')
-rw-r--r--become_yukarin/model/sr_model.py119
1 files changed, 119 insertions, 0 deletions
diff --git a/become_yukarin/model/sr_model.py b/become_yukarin/model/sr_model.py
new file mode 100644
index 0000000..74119a4
--- /dev/null
+++ b/become_yukarin/model/sr_model.py
@@ -0,0 +1,119 @@
+import chainer
+import chainer.functions as F
+import chainer.links as L
+
+from become_yukarin.config.sr_config import SRModelConfig
+
+
+class CBR(chainer.Chain):
+ def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False):
+ super().__init__()
+ self.bn = bn
+ self.activation = activation
+ self.dropout = dropout
+
+ w = chainer.initializers.Normal(0.02)
+ with self.init_scope():
+ if sample == 'down':
+ self.c = L.Convolution2D(ch0, ch1, 4, 2, 1, initialW=w)
+ else:
+ self.c = L.Deconvolution2D(ch0, ch1, 4, 2, 1, initialW=w)
+ if bn:
+ self.batchnorm = L.BatchNormalization(ch1)
+
+ def __call__(self, x):
+ h = self.c(x)
+ if self.bn:
+ h = self.batchnorm(h)
+ if self.dropout:
+ h = F.dropout(h)
+ if self.activation is not None:
+ h = self.activation(h)
+ return h
+
+
+class Encoder(chainer.Chain):
+ def __init__(self, in_ch):
+ super().__init__()
+ w = chainer.initializers.Normal(0.02)
+ with self.init_scope():
+ self.c0 = L.Convolution2D(in_ch, 64, 3, 1, 1, initialW=w)
+ self.c1 = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c2 = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c3 = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c4 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c5 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c6 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c7 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+
+ def __call__(self, x):
+ x = F.reshape(x, (len(x), 1) + x.shape[1:])
+ hs = [F.leaky_relu(self.c0(x))]
+ for i in range(1, 8):
+ hs.append(self['c%d' % i](hs[i - 1]))
+ return hs
+
+
+class Decoder(chainer.Chain):
+ def __init__(self, out_ch):
+ super().__init__()
+ w = chainer.initializers.Normal(0.02)
+ with self.init_scope():
+ self.c0 = CBR(512, 512, bn=True, sample='up', activation=F.relu, dropout=True)
+ self.c1 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=True)
+ self.c2 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=True)
+ self.c3 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=False)
+ self.c4 = CBR(1024, 256, bn=True, sample='up', activation=F.relu, dropout=False)
+ self.c5 = CBR(512, 128, bn=True, sample='up', activation=F.relu, dropout=False)
+ self.c6 = CBR(256, 64, bn=True, sample='up', activation=F.relu, dropout=False)
+ self.c7 = L.Convolution2D(128, out_ch, 3, 1, 1, initialW=w)
+
+ def __call__(self, hs):
+ h = self.c0(hs[-1])
+ for i in range(1, 8):
+ h = F.concat([h, hs[-i - 1]])
+ if i < 7:
+ h = self['c%d' % i](h)
+ else:
+ h = self.c7(h)
+ return h
+
+
+class SRPredictor(chainer.Chain):
+ def __init__(self, in_ch, out_ch):
+ super().__init__()
+ with self.init_scope():
+ self.encoder = Encoder(in_ch)
+ self.decoder = Decoder(out_ch)
+
+ def __call__(self, x):
+ return self.decoder(self.encoder(x))
+
+
+class SRDiscriminator(chainer.Chain):
+ def __init__(self, in_ch, out_ch):
+ super().__init__()
+ w = chainer.initializers.Normal(0.02)
+ with self.init_scope():
+ self.c0_0 = CBR(in_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c0_1 = CBR(out_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c1 = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c2 = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c3 = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c4 = L.Convolution2D(512, 1, 3, 1, 1, initialW=w)
+
+ def __call__(self, x_0, x_1):
+ x_0 = F.reshape(x_0, (len(x_0), 1) + x_0.shape[1:])
+ h = F.concat([self.c0_0(x_0), self.c0_1(x_1)])
+ h = self.c1(h)
+ h = self.c2(h)
+ h = self.c3(h)
+ h = self.c4(h)
+ # h = F.average_pooling_2d(h, h.data.shape[2], 1, 0)
+ return h
+
+
+def create_sr(config: SRModelConfig):
+ predictor = SRPredictor(in_ch=1, out_ch=3)
+ discriminator = SRDiscriminator(in_ch=1, out_ch=3)
+ return predictor, discriminator