summaryrefslogtreecommitdiff
path: root/become_yukarin/model/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'become_yukarin/model/model.py')
-rw-r--r--become_yukarin/model/model.py313
1 files changed, 89 insertions, 224 deletions
diff --git a/become_yukarin/model/model.py b/become_yukarin/model/model.py
index 71fb805..56870d9 100644
--- a/become_yukarin/model/model.py
+++ b/become_yukarin/model/model.py
@@ -1,16 +1,14 @@
-from functools import partial
-from typing import List
-
import chainer
+import chainer.functions as F
+import chainer.links as L
-from become_yukarin.config.config import DiscriminatorModelConfig
from become_yukarin.config.config import ModelConfig
class Convolution1D(chainer.links.ConvolutionND):
def __init__(self, in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, initialW=None, initial_bias=None,
- cover_all=False):
+ cover_all=False) -> None:
super().__init__(
ndim=1,
in_channels=in_channels,
@@ -25,268 +23,135 @@ class Convolution1D(chainer.links.ConvolutionND):
)
-class LegacyConvolution1D(chainer.links.Convolution2D):
- def __init__(self, in_channels, out_channels, ksize=None, stride=1, pad=0,
- nobias=False, initialW=None, initial_bias=None, **kwargs):
- assert ksize is None or isinstance(ksize, int)
- assert isinstance(stride, int)
- assert isinstance(pad, int)
+class Deconvolution1D(chainer.links.DeconvolutionND):
+ def __init__(self, in_channels, out_channels, ksize, stride=1, pad=0,
+ nobias=False, outsize=None,
+ initialW=None, initial_bias=None) -> None:
super().__init__(
+ ndim=1,
in_channels=in_channels,
out_channels=out_channels,
- ksize=(ksize, 1),
- stride=(stride, 1),
- pad=(pad, 0),
+ ksize=ksize,
+ stride=stride,
+ pad=pad,
nobias=nobias,
+ outsize=outsize,
initialW=initialW,
initial_bias=initial_bias,
- **kwargs,
)
- def __call__(self, x):
- assert x.shape[-1] == 1
- return super().__call__(x)
-
-
-class ConvHighway(chainer.link.Chain):
- def __init__(self, in_out_size, nobias=False, activate=chainer.functions.relu,
- init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1):
- super().__init__()
- self.activate = activate
-
- with self.init_scope():
- self.plain = Convolution1D(
- in_out_size, in_out_size, 1, nobias=nobias,
- initialW=init_Wh, initial_bias=init_bh)
- self.transform = Convolution1D(
- in_out_size, in_out_size, 1, nobias=nobias,
- initialW=init_Wt, initial_bias=init_bt)
-
- def __call__(self, x):
- out_plain = self.activate(self.plain(x))
- out_transform = chainer.functions.sigmoid(self.transform(x))
- y = out_plain * out_transform + x * (1 - out_transform)
- return y
-
-
-class PreNet(chainer.link.Chain):
- def __init__(self, in_channels: int, hidden_channels: int, out_channels: int) -> None:
- super().__init__()
- with self.init_scope():
- self.conv1 = Convolution1D(in_channels, hidden_channels, 1)
- self.conv2 = Convolution1D(hidden_channels, out_channels, 1)
-
- def __call__(self, x):
- h = x
- h = chainer.functions.dropout((chainer.functions.relu(self.conv1(h)), 0.5))
- h = chainer.functions.dropout((chainer.functions.relu(self.conv2(h)), 0.5))
- return h
-
-class Conv1DBank(chainer.link.Chain):
- def __init__(self, in_channels: int, out_channels: int, k: int) -> None:
+class CBR(chainer.Chain):
+ def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False) -> None:
super().__init__()
- self.stacked_channels = out_channels * k
- self.pads = [
- partial(chainer.functions.pad, pad_width=((0, 0), (0, 0), (i // 2, (i + 1) // 2)), mode='constant')
- for i in range(k)
- ]
+ self.bn = bn
+ self.activation = activation
+ self.dropout = dropout
+ w = chainer.initializers.Normal(0.02)
with self.init_scope():
- self.convs = chainer.link.ChainList(
- *(Convolution1D(in_channels, out_channels, i + 1, nobias=True) for i in range(k))
- )
- self.bn = chainer.links.BatchNormalization(out_channels * k)
+ if sample == 'down':
+ self.c = Convolution1D(ch0, ch1, 4, 2, 1, initialW=w)
+ else:
+ self.c = Deconvolution1D(ch0, ch1, 4, 2, 1, initialW=w)
+ if bn:
+ self.batchnorm = L.BatchNormalization(ch1)
def __call__(self, x):
- h = x
- h = chainer.functions.concat([conv(pad(h)) for pad, conv in zip(self.pads, self.convs)])
- h = chainer.functions.relu(self.bn(h))
+ h = self.c(x)
+ if self.bn:
+ h = self.batchnorm(h)
+ if self.dropout:
+ h = F.dropout(h)
+ if self.activation is not None:
+ h = self.activation(h)
return h
-class Conv1DProjections(chainer.link.Chain):
- def __init__(self, in_channels: int, hidden_channels: int, out_channels: int) -> None:
+class Encoder(chainer.Chain):
+ def __init__(self, in_ch) -> None:
super().__init__()
-
+ w = chainer.initializers.Normal(0.02)
with self.init_scope():
- self.conv1 = Convolution1D(in_channels, hidden_channels, 3, pad=1, nobias=True)
- self.bn1 = chainer.links.BatchNormalization(hidden_channels)
- self.conv2 = Convolution1D(hidden_channels, out_channels, 3, pad=1, nobias=True)
- self.bn2 = chainer.links.BatchNormalization(out_channels)
+ self.c0 = Convolution1D(in_ch, 64, 3, 1, 1, initialW=w)
+ self.c1 = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c2 = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c3 = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c4 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c5 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c6 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c7 = CBR(512, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
def __call__(self, x):
- h = x
- h = chainer.functions.relu(self.bn1(self.conv1(h)))
- h = chainer.functions.relu(self.bn2(self.conv2(h)))
- return h
+ hs = [F.leaky_relu(self.c0(x))]
+ for i in range(1, 8):
+ hs.append(self['c%d' % i](hs[i - 1]))
+ return hs
-class CBHG(chainer.link.Chain):
- def __init__(
- self,
- in_channels: int,
- conv_bank_out_channels: int,
- conv_bank_k: int,
- max_pooling_k: int,
- conv_projections_hidden_channels: int,
- highway_layers: int,
- out_channels: int,
- disable_last_rnn: bool,
- ) -> None:
+class Decoder(chainer.Chain):
+ def __init__(self, out_ch) -> None:
super().__init__()
- self.max_pooling_padding = partial(
- chainer.functions.pad,
- pad_width=((0, 0), (0, 0), ((max_pooling_k - 1) // 2, max_pooling_k // 2)),
- mode='constant',
- )
- self.max_pooling = chainer.functions.MaxPoolingND(1, max_pooling_k, 1, cover_all=False)
- self.out_size = out_channels * (1 if disable_last_rnn else 2)
-
+ w = chainer.initializers.Normal(0.02)
with self.init_scope():
- self.conv_bank = Conv1DBank(
- in_channels=in_channels,
- out_channels=conv_bank_out_channels,
- k=conv_bank_k,
- )
- self.conv_projectoins = Conv1DProjections(
- in_channels=self.conv_bank.stacked_channels,
- hidden_channels=conv_projections_hidden_channels,
- out_channels=out_channels,
- )
- self.highways = chainer.link.ChainList(
- *([ConvHighway(out_channels) for _ in range(highway_layers)])
- )
- if not disable_last_rnn:
- self.gru = chainer.links.NStepBiGRU(
- n_layers=1,
- in_size=out_channels,
- out_size=out_channels,
- dropout=0.0,
- )
+ self.c0 = CBR(512, 512, bn=True, sample='up', activation=F.relu, dropout=True)
+ self.c1 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=True)
+ self.c2 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=True)
+ self.c3 = CBR(1024, 512, bn=True, sample='up', activation=F.relu, dropout=False)
+ self.c4 = CBR(1024, 256, bn=True, sample='up', activation=F.relu, dropout=False)
+ self.c5 = CBR(512, 128, bn=True, sample='up', activation=F.relu, dropout=False)
+ self.c6 = CBR(256, 64, bn=True, sample='up', activation=F.relu, dropout=False)
+ self.c7 = Convolution1D(128, out_ch, 3, 1, 1, initialW=w)
- def __call__(self, x):
- h = x
- h = self.conv_bank(h)
- h = self.max_pooling(self.max_pooling_padding(h))
- h = self.conv_projectoins(h)
- h = h + x
- for highway in self.highways:
- h = highway(h)
-
- if hasattr(self, 'gru'):
- h = chainer.functions.separate(chainer.functions.transpose(h, axes=(0, 2, 1)))
- _, h = self.gru(None, h)
- h = chainer.functions.transpose(chainer.functions.stack(h), axes=(0, 2, 1))
+ def __call__(self, hs):
+ h = self.c0(hs[-1])
+ for i in range(1, 8):
+ h = F.concat([h, hs[-i - 1]])
+ if i < 7:
+ h = self['c%d' % i](h)
+ else:
+ h = self.c7(h)
return h
-class Predictor(chainer.link.Chain):
- def __init__(self, network, out_size: int) -> None:
+class Predictor(chainer.Chain):
+ def __init__(self, in_ch, out_ch) -> None:
super().__init__()
with self.init_scope():
- self.network = network
- self.last = Convolution1D(network.out_size, out_size, 1)
+ self.encoder = Encoder(in_ch)
+ self.decoder = Decoder(out_ch)
def __call__(self, x):
- h = x
- h = self.network(h)
- h = self.last(h)
- return h
+ return self.decoder(self.encoder(x))
-class Aligner(chainer.link.Chain):
- def __init__(self, in_size: int, out_time_length: int) -> None:
+class Discriminator(chainer.Chain):
+ def __init__(self, in_ch, out_ch) -> None:
super().__init__()
+ w = chainer.initializers.Normal(0.02)
with self.init_scope():
- self.gru = chainer.links.NStepBiGRU(
- n_layers=1,
- in_size=in_size,
- out_size=in_size // 2,
- dropout=0.0,
- )
- self.last = Convolution1D(in_size // 2 * 2, out_time_length, 1)
+ self.c0_0 = CBR(in_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c0_1 = CBR(out_ch, 32, bn=False, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c1 = CBR(64, 128, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c2 = CBR(128, 256, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c3 = CBR(256, 512, bn=True, sample='down', activation=F.leaky_relu, dropout=False)
+ self.c4 = Convolution1D(512, 1, 3, 1, 1, initialW=w)
- def __call__(self, x):
- """
- :param x: (batch, channel, timeA)
- """
- h = x
- h = chainer.functions.separate(chainer.functions.transpose(h, axes=(0, 2, 1))) # h: batch * (timeA, channel)
- _, h = self.gru(None, h) # h: batch * (timeA, ?)
- h = chainer.functions.transpose(chainer.functions.stack(h), axes=(0, 2, 1)) # h: (batch, ?, timeA)
- h = chainer.functions.softmax(self.last(h), axis=1) # h: (batch, timeB, timeA)
-
- h = chainer.functions.matmul(x, h) # h: (batch, channel, time)
- return h
-
-
-class Discriminator(chainer.link.Chain):
- def __init__(self, in_channels: int, hidden_channels_list: List[int]) -> None:
- super().__init__()
- with self.init_scope():
- self.convs = chainer.link.ChainList(*(
- LegacyConvolution1D(i_c, o_c, ksize=2, stride=2)
- for i_c, o_c in zip([in_channels] + hidden_channels_list[:-1], hidden_channels_list)
- ))
- self.last_conv = LegacyConvolution1D(hidden_channels_list[-1], 1, ksize=1)
-
- def __call__(self, x):
- """
- :param x: (batch, channel, time)
- """
- h = x
- h = chainer.functions.reshape(h, h.shape + (1,))
- for conv in self.convs.children():
- h = chainer.functions.relu(conv(h))
- h = self.last_conv(h)
- h = chainer.functions.reshape(h, h.shape[:-1])
+ def __call__(self, x_0, x_1):
+ h = F.concat([self.c0_0(x_0), self.c0_1(x_1)])
+ h = self.c1(h)
+ h = self.c2(h)
+ h = self.c3(h)
+ h = self.c4(h)
+ # h = F.average_pooling_2d(h, h.data.shape[2], 1, 0)
return h
def create_predictor(config: ModelConfig):
- network = CBHG(
- in_channels=config.in_channels,
- conv_bank_out_channels=config.conv_bank_out_channels,
- conv_bank_k=config.conv_bank_k,
- max_pooling_k=config.max_pooling_k,
- conv_projections_hidden_channels=config.conv_projections_hidden_channels,
- highway_layers=config.highway_layers,
- out_channels=config.out_channels,
- disable_last_rnn=config.disable_last_rnn,
- )
- predictor = Predictor(
- network=network,
- out_size=config.out_size,
- )
- return predictor
-
-
-def create_aligner(config: ModelConfig):
- assert config.enable_aligner
- aligner = Aligner(
- in_size=config.in_channels,
- out_time_length=config.aligner_out_time_length,
- )
- return aligner
-
-
-def create_discriminator(config: DiscriminatorModelConfig):
- discriminator = Discriminator(
- in_channels=config.in_channels,
- hidden_channels_list=config.hidden_channels_list,
- )
- return discriminator
+ return Predictor(in_ch=config.in_channels, out_ch=config.out_channels)
def create(config: ModelConfig):
predictor = create_predictor(config)
- if config.enable_aligner:
- aligner = create_aligner(config)
- else:
- aligner = None
- if config.discriminator is not None:
- discriminator = create_discriminator(config.discriminator)
- else:
- discriminator = None
- return predictor, aligner, discriminator
+ discriminator = Discriminator(in_ch=config.in_channels, out_ch=config.out_channels)
+ return predictor, discriminator