summaryrefslogtreecommitdiff
path: root/become_yukarin/dataset/dataset.py
diff options
context:
space:
mode:
Diffstat (limited to 'become_yukarin/dataset/dataset.py')
-rw-r--r--become_yukarin/dataset/dataset.py75
1 files changed, 39 insertions, 36 deletions
diff --git a/become_yukarin/dataset/dataset.py b/become_yukarin/dataset/dataset.py
index 5ad7a80..b597bba 100644
--- a/become_yukarin/dataset/dataset.py
+++ b/become_yukarin/dataset/dataset.py
@@ -66,7 +66,7 @@ class SplitProcess(BaseDataProcess):
class WaveFileLoadProcess(BaseDataProcess):
- def __init__(self, sample_rate: int, top_db: float, pad_second: float = 0, dtype=numpy.float32):
+ def __init__(self, sample_rate: int, top_db: float = None, pad_second: float = 0, dtype=numpy.float32):
self._sample_rate = sample_rate
self._top_db = top_db
self._pad_second = pad_second
@@ -394,27 +394,29 @@ def create(config: DatasetConfig):
data_process_train = copy.deepcopy(data_process_base)
- def add_seed():
- return LambdaProcess(lambda d, test: dict(seed=numpy.random.randint(2 ** 32), **d))
+ # cropping
+ if config.train_crop_size is not None:
+ def add_seed():
+ return LambdaProcess(lambda d, test: dict(seed=numpy.random.randint(2 ** 32), **d))
- def padding(s):
- return ChainProcess([
- LambdaProcess(lambda d, test: dict(data=d[s], seed=d['seed'])),
- RandomPaddingProcess(min_size=config.train_crop_size),
- ])
+ def padding(s):
+ return ChainProcess([
+ LambdaProcess(lambda d, test: dict(data=d[s], seed=d['seed'])),
+ RandomPaddingProcess(min_size=config.train_crop_size),
+ ])
- def crop(s):
- return ChainProcess([
- LambdaProcess(lambda d, test: dict(data=d[s], seed=d['seed'])),
- RandomCropProcess(crop_size=config.train_crop_size),
- ])
+ def crop(s):
+ return ChainProcess([
+ LambdaProcess(lambda d, test: dict(data=d[s], seed=d['seed'])),
+ RandomCropProcess(crop_size=config.train_crop_size),
+ ])
- data_process_train.append(ChainProcess([
- add_seed(),
- SplitProcess(dict(input=padding('input'), target=padding('target'), mask=padding('mask'))),
- add_seed(),
- SplitProcess(dict(input=crop('input'), target=crop('target'), mask=crop('mask'))),
- ]))
+ data_process_train.append(ChainProcess([
+ add_seed(),
+ SplitProcess(dict(input=padding('input'), target=padding('target'), mask=padding('mask'))),
+ add_seed(),
+ SplitProcess(dict(input=crop('input'), target=crop('target'), mask=crop('mask'))),
+ ]))
# add noise
data_process_train.append(SplitProcess(dict(
@@ -432,23 +434,24 @@ def create(config: DatasetConfig):
)))
data_process_test = data_process_base
- data_process_test.append(SplitProcess(dict(
- input=ChainProcess([
- LambdaProcess(lambda d, test: d['input']),
- LastPaddingProcess(min_size=config.train_crop_size),
- FirstCropProcess(crop_size=config.train_crop_size),
- ]),
- target=ChainProcess([
- LambdaProcess(lambda d, test: d['target']),
- LastPaddingProcess(min_size=config.train_crop_size),
- FirstCropProcess(crop_size=config.train_crop_size),
- ]),
- mask=ChainProcess([
- LambdaProcess(lambda d, test: d['mask']),
- LastPaddingProcess(min_size=config.train_crop_size),
- FirstCropProcess(crop_size=config.train_crop_size),
- ]),
- )))
+ if config.train_crop_size is not None:
+ data_process_test.append(SplitProcess(dict(
+ input=ChainProcess([
+ LambdaProcess(lambda d, test: d['input']),
+ LastPaddingProcess(min_size=config.train_crop_size),
+ FirstCropProcess(crop_size=config.train_crop_size),
+ ]),
+ target=ChainProcess([
+ LambdaProcess(lambda d, test: d['target']),
+ LastPaddingProcess(min_size=config.train_crop_size),
+ FirstCropProcess(crop_size=config.train_crop_size),
+ ]),
+ mask=ChainProcess([
+ LambdaProcess(lambda d, test: d['mask']),
+ LastPaddingProcess(min_size=config.train_crop_size),
+ FirstCropProcess(crop_size=config.train_crop_size),
+ ]),
+ )))
num_test = config.num_test
pairs = [