summaryrefslogtreecommitdiff
path: root/become_yukarin/config/config.py
diff options
context:
space:
mode:
Diffstat (limited to 'become_yukarin/config/config.py')
-rw-r--r--become_yukarin/config/config.py47
1 files changed, 4 insertions, 43 deletions
diff --git a/become_yukarin/config/config.py b/become_yukarin/config/config.py
index ee1d68f..f49b185 100644
--- a/become_yukarin/config/config.py
+++ b/become_yukarin/config/config.py
@@ -27,32 +27,14 @@ class DatasetConfig(NamedTuple):
num_test: int
-class DiscriminatorModelConfig(NamedTuple):
- in_channels: int
- hidden_channels_list: List[int]
-
-
class ModelConfig(NamedTuple):
in_channels: int
- conv_bank_out_channels: int
- conv_bank_k: int
- max_pooling_k: int
- conv_projections_hidden_channels: int
- highway_layers: int
out_channels: int
- out_size: int
- aligner_out_time_length: int
- disable_last_rnn: bool
- enable_aligner: bool
- discriminator: Optional[DiscriminatorModelConfig]
class LossConfig(NamedTuple):
- l1: float
- predictor_fake: float
- discriminator_true: float
- discriminator_fake: float
- discriminator_grad: float
+ mse: float
+ adversarial: float
class TrainConfig(NamedTuple):
@@ -100,14 +82,6 @@ def create_from_json(s: Union[str, Path]):
backward_compatible(d)
- if d['model']['discriminator'] is not None:
- discriminator_model_config = DiscriminatorModelConfig(
- in_channels=d['model']['discriminator']['in_channels'],
- hidden_channels_list=d['model']['discriminator']['hidden_channels_list'],
- )
- else:
- discriminator_model_config = None
-
return Config(
dataset=DatasetConfig(
param=Param(),
@@ -128,24 +102,11 @@ def create_from_json(s: Union[str, Path]):
),
model=ModelConfig(
in_channels=d['model']['in_channels'],
- conv_bank_out_channels=d['model']['conv_bank_out_channels'],
- conv_bank_k=d['model']['conv_bank_k'],
- max_pooling_k=d['model']['max_pooling_k'],
- conv_projections_hidden_channels=d['model']['conv_projections_hidden_channels'],
- highway_layers=d['model']['highway_layers'],
out_channels=d['model']['out_channels'],
- out_size=d['model']['out_size'],
- aligner_out_time_length=d['model']['aligner_out_time_length'],
- disable_last_rnn=d['model']['disable_last_rnn'],
- enable_aligner=d['model']['enable_aligner'],
- discriminator=discriminator_model_config,
),
loss=LossConfig(
- l1=d['loss']['l1'],
- predictor_fake=d['loss']['predictor_fake'],
- discriminator_true=d['loss']['discriminator_true'],
- discriminator_fake=d['loss']['discriminator_fake'],
- discriminator_grad=d['loss']['discriminator_grad'],
+ mse=d['loss']['mse'],
+ adversarial=d['loss']['adversarial'],
),
train=TrainConfig(
batchsize=d['train']['batchsize'],