summaryrefslogtreecommitdiff
path: root/scripts/voice_conversion_test.py
diff options
context:
space:
mode:
authorHiroshiba Kazuyuki <kazuyuki_hiroshiba@dwango.co.jp>2017-12-30 17:45:34 +0900
committerHiroshiba Kazuyuki <kazuyuki_hiroshiba@dwango.co.jp>2017-12-30 17:45:34 +0900
commit123fd90875f0b3d18192712a97008beb1493243a (patch)
tree2d5aff5b139aa40ad38adefbc1ded6ab4226d36b /scripts/voice_conversion_test.py
parent3b38bf420774f2a7f718be927689b67446e680c9 (diff)
w/o cropping mode
Diffstat (limited to 'scripts/voice_conversion_test.py')
-rw-r--r--scripts/voice_conversion_test.py66
1 files changed, 66 insertions, 0 deletions
diff --git a/scripts/voice_conversion_test.py b/scripts/voice_conversion_test.py
new file mode 100644
index 0000000..e0ed8c4
--- /dev/null
+++ b/scripts/voice_conversion_test.py
@@ -0,0 +1,66 @@
+import argparse
+import glob
+import multiprocessing
+import re
+from functools import partial
+from pathlib import Path
+
+import librosa
+import numpy
+
+from become_yukarin import VoiceChanger
+from become_yukarin.config import create_from_json as create_config
+
+parser = argparse.ArgumentParser()
+parser.add_argument('model_names', nargs='+')
+parser.add_argument('-md', '--model_directory', type=Path, default=Path('/mnt/dwango/hiroshiba/become-yukarin/'))
+parser.add_argument('-iwd', '--input_wave_directory', type=Path,
+ default=Path('/mnt/dwango/hiroshiba/become-yukarin/dataset/hiho-wave/hiho-pause-atr503-subset/'))
+args = parser.parse_args()
+
+model_directory = args.model_directory # type: Path
+input_wave_directory = args.input_wave_directory # type: Path
+
+paths_test = list(Path('./test_data/').glob('*.wav'))
+
+
+def extract_number(f):
+ s = re.findall("\d+", str(f))
+ return int(s[-1]) if s else -1
+
+
+def process(p: Path, voice_changer: VoiceChanger):
+ try:
+ if p.suffix in ['.npy', '.npz']:
+ p = glob.glob(str(input_wave_directory / p.stem) + '.*')[0]
+ p = Path(p)
+ wave = voice_changer(p)
+ librosa.output.write_wav(str(output / p.stem) + '.wav', wave.wave, wave.sampling_rate, norm=True)
+ except:
+ import traceback
+ print('error!', str(p))
+ traceback.format_exc()
+
+
+for model_name in args.model_names:
+ base_model = model_directory / model_name
+ config = create_config(base_model / 'config.json')
+
+ input_paths = list(sorted([Path(p) for p in glob.glob(str(config.dataset.input_glob))]))
+ numpy.random.RandomState(config.dataset.seed).shuffle(input_paths)
+ path_train = input_paths[0]
+ path_test = input_paths[-1]
+
+ model_paths = base_model.glob('predictor*.npz')
+ model_path = list(sorted(model_paths, key=extract_number))[-1]
+ print(model_path)
+ voice_changer = VoiceChanger(config, model_path)
+
+ output = Path('./output').absolute() / base_model.name
+ output.mkdir(exist_ok=True)
+
+ paths = [path_train, path_test] + paths_test
+
+ process_partial = partial(process, voice_changer=voice_changer)
+ pool = multiprocessing.Pool()
+ pool.map(process_partial, paths)