summaryrefslogtreecommitdiff
path: root/scripts/super_resolution_test.py
diff options
context:
space:
mode:
authorHiroshiba Kazuyuki <kazuyuki_hiroshiba@dwango.co.jp>2018-01-15 22:18:02 +0900
committerHiroshiba Kazuyuki <kazuyuki_hiroshiba@dwango.co.jp>2018-01-15 22:18:02 +0900
commit83608c12e7bb28df1966cbe5b9d86a8e23175044 (patch)
tree6fc24caaa01d447bf9819bf6c45b3e2d33685579 /scripts/super_resolution_test.py
parentc0f3eacabde5d41992a5ae1d8d8f0f170f6b155e (diff)
超解像可能に
Diffstat (limited to 'scripts/super_resolution_test.py')
-rw-r--r--scripts/super_resolution_test.py80
1 files changed, 80 insertions, 0 deletions
diff --git a/scripts/super_resolution_test.py b/scripts/super_resolution_test.py
new file mode 100644
index 0000000..8b04ce0
--- /dev/null
+++ b/scripts/super_resolution_test.py
@@ -0,0 +1,80 @@
+import argparse
+import glob
+import multiprocessing
+import re
+from functools import partial
+from pathlib import Path
+
+import librosa
+import numpy
+
+from become_yukarin import SuperResolution
+from become_yukarin.config.sr_config import create_from_json as create_config
+from become_yukarin.dataset.dataset import AcousticFeatureProcess
+from become_yukarin.dataset.dataset import WaveFileLoadProcess
+
+parser = argparse.ArgumentParser()
+parser.add_argument('model_names', nargs='+')
+parser.add_argument('-md', '--model_directory', type=Path, default=Path('/mnt/dwango/hiroshiba/become-yukarin/'))
+parser.add_argument('-iwd', '--input_wave_directory', type=Path,
+ default=Path('/mnt/dwango/hiroshiba/become-yukarin/dataset/yukari-wave/yukari-news/'))
+args = parser.parse_args()
+
+model_directory = args.model_directory # type: Path
+input_wave_directory = args.input_wave_directory # type: Path
+
+paths_test = list(Path('./test_data_sr/').glob('*.wav'))
+
+
+def extract_number(f):
+ s = re.findall("\d+", str(f))
+ return int(s[-1]) if s else -1
+
+
+def process(p: Path, super_resolution: SuperResolution):
+ param = config.dataset.param
+ wave_process = WaveFileLoadProcess(
+ sample_rate=param.voice_param.sample_rate,
+ top_db=None,
+ )
+ acoustic_feature_process = AcousticFeatureProcess(
+ frame_period=param.acoustic_feature_param.frame_period,
+ order=param.acoustic_feature_param.order,
+ alpha=param.acoustic_feature_param.alpha,
+ )
+
+ try:
+ if p.suffix in ['.npy', '.npz']:
+ p = glob.glob(str(input_wave_directory / p.stem) + '.*')[0]
+ p = Path(p)
+ input = acoustic_feature_process(wave_process(str(p)))
+ wave = super_resolution(input.spectrogram, acoustic_feature=input, sampling_rate=param.voice_param.sample_rate)
+ librosa.output.write_wav(str(output / p.stem) + '.wav', wave.wave, wave.sampling_rate, norm=True)
+ except:
+ import traceback
+ print('error!', str(p))
+ traceback.format_exc()
+
+
+for model_name in args.model_names:
+ base_model = model_directory / model_name
+ config = create_config(base_model / 'config.json')
+
+ input_paths = list(sorted([Path(p) for p in glob.glob(str(config.dataset.input_glob))]))
+ numpy.random.RandomState(config.dataset.seed).shuffle(input_paths)
+ path_train = input_paths[0]
+ path_test = input_paths[-1]
+
+ model_paths = base_model.glob('predictor*.npz')
+ model_path = list(sorted(model_paths, key=extract_number))[-1]
+ print(model_path)
+ super_resolution = SuperResolution(config, model_path)
+
+ output = Path('./output').absolute() / base_model.name
+ output.mkdir(exist_ok=True)
+
+ paths = [path_train, path_test] + paths_test
+
+ process_partial = partial(process, super_resolution=super_resolution)
+ pool = multiprocessing.Pool()
+ pool.map(process_partial, paths)