summaryrefslogtreecommitdiff
path: root/scripts/extract_acoustic_feature.py
diff options
context:
space:
mode:
authorHiroshiba Kazuyuki <kazuyuki_hiroshiba@dwango.co.jp>2018-01-03 18:01:19 +0900
committerHiroshiba Kazuyuki <kazuyuki_hiroshiba@dwango.co.jp>2018-01-03 18:01:19 +0900
commit12cb80fb45d0f19c5d98ee60cda346ad324d1377 (patch)
tree24550850be2ee54205345a73899dfef0bb6cad6f /scripts/extract_acoustic_feature.py
parent123fd90875f0b3d18192712a97008beb1493243a (diff)
true alignment
Diffstat (limited to 'scripts/extract_acoustic_feature.py')
-rw-r--r--scripts/extract_acoustic_feature.py47
1 files changed, 27 insertions, 20 deletions
diff --git a/scripts/extract_acoustic_feature.py b/scripts/extract_acoustic_feature.py
index e1794cf..297c10b 100644
--- a/scripts/extract_acoustic_feature.py
+++ b/scripts/extract_acoustic_feature.py
@@ -116,11 +116,11 @@ def generate_feature(path1, path2):
def generate_mean_var(path_directory: Path):
path_mean = Path(path_directory, 'mean.npy')
- var_mean = Path(path_directory, 'var.npy')
+ path_var = Path(path_directory, 'var.npy')
if path_mean.exists():
path_mean.unlink()
- if var_mean.exists():
- var_mean.unlink()
+ if path_var.exists():
+ path_var.unlink()
acoustic_feature_load_process = AcousticFeatureLoadProcess(validate=False)
acoustic_feature_save_process = AcousticFeatureSaveProcess(validate=False)
@@ -131,33 +131,40 @@ def generate_mean_var(path_directory: Path):
mfcc_list = []
for path in path_directory.glob('*'):
feature = acoustic_feature_load_process(path)
- f0_list.append(numpy.ravel(feature.f0[feature.voiced])) # remove unvoiced
- spectrogram_list.append(numpy.ravel(feature.spectrogram))
- aperiodicity_list.append(numpy.ravel(feature.aperiodicity))
- mfcc_list.append(numpy.ravel(feature.mfcc))
+ f0_list.append(feature.f0[feature.voiced]) # remove unvoiced
+ spectrogram_list.append(feature.spectrogram)
+ aperiodicity_list.append(feature.aperiodicity)
+ mfcc_list.append(feature.mfcc)
- f0_list = numpy.concatenate(f0_list)
- spectrogram_list = numpy.concatenate(spectrogram_list)
- aperiodicity_list = numpy.concatenate(aperiodicity_list)
- mfcc_list = numpy.concatenate(mfcc_list)
+ def concatenate(arr_list):
+ try:
+ arr_list = numpy.concatenate(arr_list)
+ except:
+ pass
+ return arr_list
+
+ f0_list = concatenate(f0_list)
+ spectrogram_list = concatenate(spectrogram_list)
+ aperiodicity_list = concatenate(aperiodicity_list)
+ mfcc_list = concatenate(mfcc_list)
mean = AcousticFeature(
- f0=numpy.mean(f0_list),
- spectrogram=numpy.mean(spectrogram_list),
- aperiodicity=numpy.mean(aperiodicity_list),
- mfcc=numpy.mean(mfcc_list),
+ f0=numpy.mean(f0_list, axis=0, keepdims=True),
+ spectrogram=numpy.mean(spectrogram_list, axis=0, keepdims=True),
+ aperiodicity=numpy.mean(aperiodicity_list, axis=0, keepdims=True),
+ mfcc=numpy.mean(mfcc_list, axis=0, keepdims=True),
voiced=numpy.nan,
)
var = AcousticFeature(
- f0=numpy.var(f0_list),
- spectrogram=numpy.var(spectrogram_list),
- aperiodicity=numpy.var(aperiodicity_list),
- mfcc=numpy.var(mfcc_list),
+ f0=numpy.var(f0_list, axis=0, keepdims=True),
+ spectrogram=numpy.var(spectrogram_list, axis=0, keepdims=True),
+ aperiodicity=numpy.var(aperiodicity_list, axis=0, keepdims=True),
+ mfcc=numpy.var(mfcc_list, axis=0, keepdims=True),
voiced=numpy.nan,
)
acoustic_feature_save_process({'path': path_mean, 'feature': mean})
- acoustic_feature_save_process({'path': var_mean, 'feature': var})
+ acoustic_feature_save_process({'path': path_var, 'feature': var})
def main():