summaryrefslogtreecommitdiff
path: root/become_yukarin/updater.py
diff options
context:
space:
mode:
authorHiroshiba Kazuyuki <hihokaruta@gmail.com>2018-01-14 07:40:07 +0900
committerHiroshiba Kazuyuki <hihokaruta@gmail.com>2018-01-14 07:40:07 +0900
commit2be3f03adc5695f82c6ab86da780108f786ed014 (patch)
treeae4b95aa3e45706598e66cc00ff5ad9f00ef97a9 /become_yukarin/updater.py
parentf9185301a22f1632b16dd5266197bb40cb7c302e (diff)
超解像
Diffstat (limited to 'become_yukarin/updater.py')
-rw-r--r--become_yukarin/updater.py106
1 files changed, 0 insertions, 106 deletions
diff --git a/become_yukarin/updater.py b/become_yukarin/updater.py
deleted file mode 100644
index f6444d0..0000000
--- a/become_yukarin/updater.py
+++ /dev/null
@@ -1,106 +0,0 @@
-import chainer
-import numpy
-from chainer import reporter
-
-from .config import LossConfig
-from .config import ModelConfig
-from .model import Aligner
-from .model import Discriminator
-from .model import Predictor
-
-
-class Updater(chainer.training.StandardUpdater):
- def __init__(
- self,
- loss_config: LossConfig,
- model_config: ModelConfig,
- predictor: Predictor,
- aligner: Aligner = None,
- discriminator: Discriminator = None,
- *args,
- **kwargs,
- ):
- super().__init__(*args, **kwargs)
- self.loss_config = loss_config
- self.model_config = model_config
- self.predictor = predictor
- self.aligner = aligner
- self.discriminator = discriminator
-
- def forward(self, input, target, mask):
- xp = self.predictor.xp
-
- input = chainer.as_variable(input)
- target = chainer.as_variable(target)
- mask = chainer.as_variable(mask)
-
- if self.aligner is not None:
- input = self.aligner(input)
- y = self.predictor(input)
-
- loss_l1 = chainer.functions.sum(chainer.functions.absolute_error(y, target) * mask)
- loss_l1 = loss_l1 / chainer.functions.sum(mask)
- reporter.report({'l1': loss_l1}, self.predictor)
-
- if self.discriminator is not None:
- pair_fake = chainer.functions.concat([y * mask, input])
- pair_true = chainer.functions.concat([target * mask, input])
-
- # DRAGAN
- if chainer.config.train: # grad is not available on test
- std = xp.std(pair_true.data, axis=0, keepdims=True)
- rand = xp.random.uniform(0, 1, pair_true.shape).astype(xp.float32)
- perturb = chainer.Variable(pair_true.data + 0.5 * rand * std)
- grad, = chainer.grad([self.discriminator(perturb)], [perturb], enable_double_backprop=True)
- grad = chainer.functions.sqrt(chainer.functions.batch_l2_norm_squared(grad))
- loss_grad = chainer.functions.mean_squared_error(grad, xp.ones_like(grad.data, numpy.float32))
- reporter.report({'grad': loss_grad}, self.discriminator)
-
- if xp.any(xp.isnan(loss_grad.data)):
- import code
- code.interact(local=locals())
-
- # GAN
- d_fake = self.discriminator(pair_fake)
- d_true = self.discriminator(pair_true)
- loss_dis_f = chainer.functions.average(chainer.functions.softplus(d_fake))
- loss_dis_t = chainer.functions.average(chainer.functions.softplus(-d_true))
- loss_gen_f = chainer.functions.average(chainer.functions.softplus(-d_fake))
- reporter.report({'fake': loss_dis_f}, self.discriminator)
- reporter.report({'true': loss_dis_t}, self.discriminator)
-
- tp = (d_true.data > 0.5).sum()
- fp = (d_fake.data > 0.5).sum()
- fn = (d_true.data <= 0.5).sum()
- tn = (d_fake.data <= 0.5).sum()
- accuracy = (tp + tn) / (tp + fp + fn + tn)
- precision = tp / (tp + fp)
- recall = tp / (tp + fn)
- reporter.report({'accuracy': accuracy}, self.discriminator)
- reporter.report({'precision': precision}, self.discriminator)
- reporter.report({'recall': recall}, self.discriminator)
-
- loss = {'predictor': loss_l1 * self.loss_config.l1}
-
- if self.aligner is not None:
- loss['aligner'] = loss_l1 * self.loss_config.l1
- reporter.report({'loss': loss['aligner']}, self.aligner)
-
- if self.discriminator is not None:
- loss['discriminator'] = \
- loss_dis_f * self.loss_config.discriminator_fake + \
- loss_dis_t * self.loss_config.discriminator_true
- if chainer.config.train: # grad is not available on test
- loss['discriminator'] += loss_grad * self.loss_config.discriminator_grad
- reporter.report({'loss': loss['discriminator']}, self.discriminator)
- loss['predictor'] += loss_gen_f * self.loss_config.predictor_fake
-
- reporter.report({'loss': loss['predictor']}, self.predictor)
- return loss
-
- def update_core(self):
- batch = self.get_iterator('main').next()
- loss = self.forward(**self.converter(batch, self.device))
-
- for k, opt in self.get_all_optimizers().items():
- opt.update(loss.get, k)