diff options
| author | Hiroshiba Kazuyuki <hihokaruta@gmail.com> | 2018-01-14 07:40:07 +0900 |
|---|---|---|
| committer | Hiroshiba Kazuyuki <hihokaruta@gmail.com> | 2018-01-14 07:40:07 +0900 |
| commit | 2be3f03adc5695f82c6ab86da780108f786ed014 (patch) | |
| tree | ae4b95aa3e45706598e66cc00ff5ad9f00ef97a9 /become_yukarin/updater.py | |
| parent | f9185301a22f1632b16dd5266197bb40cb7c302e (diff) | |
超解像
Diffstat (limited to 'become_yukarin/updater.py')
| -rw-r--r-- | become_yukarin/updater.py | 106 |
1 files changed, 0 insertions, 106 deletions
diff --git a/become_yukarin/updater.py b/become_yukarin/updater.py deleted file mode 100644 index f6444d0..0000000 --- a/become_yukarin/updater.py +++ /dev/null @@ -1,106 +0,0 @@ -import chainer -import numpy -from chainer import reporter - -from .config import LossConfig -from .config import ModelConfig -from .model import Aligner -from .model import Discriminator -from .model import Predictor - - -class Updater(chainer.training.StandardUpdater): - def __init__( - self, - loss_config: LossConfig, - model_config: ModelConfig, - predictor: Predictor, - aligner: Aligner = None, - discriminator: Discriminator = None, - *args, - **kwargs, - ): - super().__init__(*args, **kwargs) - self.loss_config = loss_config - self.model_config = model_config - self.predictor = predictor - self.aligner = aligner - self.discriminator = discriminator - - def forward(self, input, target, mask): - xp = self.predictor.xp - - input = chainer.as_variable(input) - target = chainer.as_variable(target) - mask = chainer.as_variable(mask) - - if self.aligner is not None: - input = self.aligner(input) - y = self.predictor(input) - - loss_l1 = chainer.functions.sum(chainer.functions.absolute_error(y, target) * mask) - loss_l1 = loss_l1 / chainer.functions.sum(mask) - reporter.report({'l1': loss_l1}, self.predictor) - - if self.discriminator is not None: - pair_fake = chainer.functions.concat([y * mask, input]) - pair_true = chainer.functions.concat([target * mask, input]) - - # DRAGAN - if chainer.config.train: # grad is not available on test - std = xp.std(pair_true.data, axis=0, keepdims=True) - rand = xp.random.uniform(0, 1, pair_true.shape).astype(xp.float32) - perturb = chainer.Variable(pair_true.data + 0.5 * rand * std) - grad, = chainer.grad([self.discriminator(perturb)], [perturb], enable_double_backprop=True) - grad = chainer.functions.sqrt(chainer.functions.batch_l2_norm_squared(grad)) - loss_grad = chainer.functions.mean_squared_error(grad, xp.ones_like(grad.data, numpy.float32)) - reporter.report({'grad': loss_grad}, self.discriminator) - - if xp.any(xp.isnan(loss_grad.data)): - import code - code.interact(local=locals()) - - # GAN - d_fake = self.discriminator(pair_fake) - d_true = self.discriminator(pair_true) - loss_dis_f = chainer.functions.average(chainer.functions.softplus(d_fake)) - loss_dis_t = chainer.functions.average(chainer.functions.softplus(-d_true)) - loss_gen_f = chainer.functions.average(chainer.functions.softplus(-d_fake)) - reporter.report({'fake': loss_dis_f}, self.discriminator) - reporter.report({'true': loss_dis_t}, self.discriminator) - - tp = (d_true.data > 0.5).sum() - fp = (d_fake.data > 0.5).sum() - fn = (d_true.data <= 0.5).sum() - tn = (d_fake.data <= 0.5).sum() - accuracy = (tp + tn) / (tp + fp + fn + tn) - precision = tp / (tp + fp) - recall = tp / (tp + fn) - reporter.report({'accuracy': accuracy}, self.discriminator) - reporter.report({'precision': precision}, self.discriminator) - reporter.report({'recall': recall}, self.discriminator) - - loss = {'predictor': loss_l1 * self.loss_config.l1} - - if self.aligner is not None: - loss['aligner'] = loss_l1 * self.loss_config.l1 - reporter.report({'loss': loss['aligner']}, self.aligner) - - if self.discriminator is not None: - loss['discriminator'] = \ - loss_dis_f * self.loss_config.discriminator_fake + \ - loss_dis_t * self.loss_config.discriminator_true - if chainer.config.train: # grad is not available on test - loss['discriminator'] += loss_grad * self.loss_config.discriminator_grad - reporter.report({'loss': loss['discriminator']}, self.discriminator) - loss['predictor'] += loss_gen_f * self.loss_config.predictor_fake - - reporter.report({'loss': loss['predictor']}, self.predictor) - return loss - - def update_core(self): - batch = self.get_iterator('main').next() - loss = self.forward(**self.converter(batch, self.device)) - - for k, opt in self.get_all_optimizers().items(): - opt.update(loss.get, k) |
