1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
import tensorflow as tf
import numpy as np
from collections import OrderedDict
import os
import glob
import cv2
rng = np.random.RandomState(2017)
def np_load_frame(filename, resize_height, resize_width):
"""
Load image path and convert it to numpy.ndarray. Notes that the color channels are BGR and the color space
is normalized from [0, 255] to [-1, 1].
:param filename: the full path of image
:param resize_height: resized height
:param resize_width: resized width
:return: numpy.ndarray
"""
image_decoded = cv2.imread(filename)
image_resized = cv2.resize(image_decoded, (resize_width, resize_height))
image_resized = image_resized.astype(dtype=np.float32)
image_resized = (image_resized / 127.5) - 1.0
return image_resized
class DataLoader(object):
def __init__(self, video_folder, resize_height=256, resize_width=256):
self.dir = video_folder
self.videos = OrderedDict()
self._resize_height = resize_height
self._resize_width = resize_width
self.setup()
def __call__(self, batch_size, time_steps, num_pred=1):
video_info_list = list(self.videos.values())
num_videos = len(video_info_list)
clip_length = time_steps + num_pred
resize_height, resize_width = self._resize_height, self._resize_width
def video_clip_generator():
v_id = -1
while True:
v_id = (v_id + 1) % num_videos
video_info = video_info_list[v_id]
start = rng.randint(0, video_info['length'] - clip_length)
video_clip = []
for frame_id in range(start, start + clip_length):
video_clip.append(np_load_frame(video_info['frame'][frame_id], resize_height, resize_width))
video_clip = np.concatenate(video_clip, axis=2)
yield video_clip
# video clip paths
dataset = tf.data.Dataset.from_generator(generator=video_clip_generator,
output_types=tf.float32,
output_shapes=[resize_height, resize_width, clip_length * 3])
print('generator dataset, {}'.format(dataset))
dataset = dataset.prefetch(buffer_size=1000)
dataset = dataset.shuffle(buffer_size=1000).batch(batch_size)
print('epoch dataset, {}'.format(dataset))
return dataset
def __getitem__(self, video_name):
assert video_name in self.videos.keys(), 'video = {} is not in {}!'.format(video_name, self.videos.keys())
return self.videos[video_name]
def setup(self):
videos = glob.glob(os.path.join(self.dir, '*'))
for video in sorted(videos):
video_name = video.split('/')[-1]
self.videos[video_name] = {}
self.videos[video_name]['path'] = video
self.videos[video_name]['frame'] = glob.glob(os.path.join(video, '*.jpg'))
self.videos[video_name]['frame'].sort()
self.videos[video_name]['length'] = len(self.videos[video_name]['frame'])
def get_video_clips(self, video, start, end):
# assert video in self.videos, 'video = {} must in {}!'.format(video, self.videos.keys())
# assert start >= 0, 'start = {} must >=0!'.format(start)
# assert end <= self.videos[video]['length'], 'end = {} must <= {}'.format(video, self.videos[video]['length'])
batch = []
for i in range(start, end):
image = np_load_frame(self.videos[video]['frame'][i], self._resize_height, self._resize_width)
batch.append(image)
return np.concatenate(batch, axis=2)
def log10(t):
"""
Calculates the base-10 log of each element in t.
@param t: The tensor from which to calculate the base-10 log.
@return: A tensor with the base-10 log of each element in t.
"""
numerator = tf.log(t)
denominator = tf.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator
def psnr_error(gen_frames, gt_frames):
"""
Computes the Peak Signal to Noise Ratio error between the generated images and the ground
truth images.
@param gen_frames: A tensor of shape [batch_size, height, width, 3]. The frames generated by the
generator model.
@param gt_frames: A tensor of shape [batch_size, height, width, 3]. The ground-truth frames for
each frame in gen_frames.
@return: A scalar tensor. The mean Peak Signal to Noise Ratio error over each frame in the
batch.
"""
shape = tf.shape(gen_frames)
num_pixels = tf.to_float(shape[1] * shape[2] * shape[3])
gt_frames = (gt_frames + 1.0) / 2.0
gen_frames = (gen_frames + 1.0) / 2.0
square_diff = tf.square(gt_frames - gen_frames)
batch_errors = 10 * log10(1 / ((1 / num_pixels) * tf.reduce_sum(square_diff, [1, 2, 3])))
return tf.reduce_mean(batch_errors)
def diff_mask(gen_frames, gt_frames, min_value=-1, max_value=1):
# normalize to [0, 1]
delta = max_value - min_value
gen_frames = (gen_frames - min_value) / delta
gt_frames = (gt_frames - min_value) / delta
gen_gray_frames = tf.image.rgb_to_grayscale(gen_frames)
gt_gray_frames = tf.image.rgb_to_grayscale(gt_frames)
diff = tf.abs(gen_gray_frames - gt_gray_frames)
return diff
def load(saver, sess, ckpt_path):
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def save(saver, sess, logdir, step):
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
|