1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
import tensorflow as tf
import os
from models import generator, discriminator, flownet, initialize_flownet
from loss_functions import intensity_loss, gradient_loss
from utils import DataLoader, load, save, psnr_error
from constant import const
os.environ['CUDA_DEVICES_ORDER'] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = const.GPU
dataset_name = const.DATASET
train_folder = const.TRAIN_FOLDER
test_folder = const.TEST_FOLDER
batch_size = const.BATCH_SIZE
iterations = const.ITERATIONS
num_his = const.NUM_HIS
height, width = 256, 256
flow_height, flow_width = const.FLOW_HEIGHT, const.FLOW_WIDTH
l_num = const.L_NUM
alpha_num = const.ALPHA_NUM
lam_lp = const.LAM_LP
lam_gdl = const.LAM_GDL
lam_adv = const.LAM_ADV
lam_flow = const.LAM_FLOW
adversarial = (lam_adv != 0)
summary_dir = const.SUMMARY_DIR
snapshot_dir = const.SNAPSHOT_DIR
print(const)
# define dataset
with tf.name_scope('dataset'):
train_loader = DataLoader(train_folder, resize_height=height, resize_width=width)
train_dataset = train_loader(batch_size=batch_size, time_steps=num_his, num_pred=1)
train_it = train_dataset.make_one_shot_iterator()
train_videos_clips_tensor = train_it.get_next()
train_videos_clips_tensor.set_shape([batch_size, height, width, 3*(num_his + 1)])
train_inputs = train_videos_clips_tensor[..., 0:num_his*3]
train_gt = train_videos_clips_tensor[..., -3:]
print('train inputs = {}'.format(train_inputs))
print('train prediction gt = {}'.format(train_gt))
test_loader = DataLoader(test_folder, resize_height=height, resize_width=width)
test_dataset = test_loader(batch_size=batch_size, time_steps=num_his, num_pred=1)
test_it = test_dataset.make_one_shot_iterator()
test_videos_clips_tensor = test_it.get_next()
test_videos_clips_tensor.set_shape([batch_size, height, width, 3*(num_his + 1)])
test_inputs = test_videos_clips_tensor[..., 0:num_his*3]
test_gt = test_videos_clips_tensor[..., -3:]
print('test inputs = {}'.format(test_inputs))
print('test prediction gt = {}'.format(test_gt))
# define training generator function
with tf.variable_scope('generator', reuse=None):
print('training = {}'.format(tf.get_variable_scope().name))
train_outputs = generator(train_inputs, layers=4, output_channel=3)
train_psnr_error = psnr_error(gen_frames=train_outputs, gt_frames=train_gt)
# define testing generator function
with tf.variable_scope('generator', reuse=True):
print('testing = {}'.format(tf.get_variable_scope().name))
test_outputs = generator(test_inputs, layers=4, output_channel=3)
test_psnr_error = psnr_error(gen_frames=test_outputs, gt_frames=test_gt)
# define intensity loss
if lam_lp != 0:
lp_loss = intensity_loss(gen_frames=train_outputs, gt_frames=train_gt, l_num=l_num)
else:
lp_loss = tf.constant(0.0, dtype=tf.float32)
# define gdl loss
if lam_gdl != 0:
gdl_loss = gradient_loss(gen_frames=train_outputs, gt_frames=train_gt, alpha=alpha_num)
else:
gdl_loss = tf.constant(0.0, dtype=tf.float32)
# define flow loss
if lam_flow != 0:
train_gt_flow = flownet(input_a=train_inputs[..., -3:], input_b=train_gt,
height=flow_height, width=flow_width, reuse=None)
train_pred_flow = flownet(input_a=train_inputs[..., -3:], input_b=train_outputs,
height=flow_height, width=flow_width, reuse=True)
flow_loss = tf.reduce_mean(tf.abs(train_gt_flow - train_pred_flow))
else:
flow_loss = tf.constant(0.0, dtype=tf.float32)
# define adversarial loss
if adversarial:
with tf.variable_scope('discriminator', reuse=None):
real_logits, real_outputs = discriminator(inputs=train_gt)
with tf.variable_scope('discriminator', reuse=True):
fake_logits, fake_outputs = discriminator(inputs=train_outputs)
print('real_outputs = {}'.format(real_outputs))
print('fake_outputs = {}'.format(fake_outputs))
adv_loss = tf.reduce_mean(tf.square(fake_outputs - 1) / 2)
dis_loss = tf.reduce_mean(tf.square(real_outputs - 1) / 2) + tf.reduce_mean(tf.square(fake_outputs) / 2)
else:
adv_loss = tf.constant(0.0, dtype=tf.float32)
dis_loss = tf.constant(0.0, dtype=tf.float32)
with tf.name_scope('training'):
g_loss = tf.add_n([lp_loss * lam_lp, gdl_loss * lam_gdl, adv_loss * lam_adv, flow_loss * lam_flow], name='g_loss')
g_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='g_step')
g_lrate = tf.train.piecewise_constant(g_step, boundaries=const.LRATE_G_BOUNDARIES, values=const.LRATE_G)
g_optimizer = tf.train.AdamOptimizer(learning_rate=g_lrate, name='g_optimizer')
g_vars = tf.get_collection(key=tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
g_train_op = g_optimizer.minimize(g_loss, global_step=g_step, var_list=g_vars, name='g_train_op')
if adversarial:
# training discriminator
d_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='d_step')
d_lrate = tf.train.piecewise_constant(d_step, boundaries=const.LRATE_D_BOUNDARIES, values=const.LRATE_D)
d_optimizer = tf.train.AdamOptimizer(learning_rate=d_lrate, name='g_optimizer')
d_vars = tf.get_collection(key=tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
d_train_op = d_optimizer.minimize(dis_loss, global_step=d_step, var_list=d_vars, name='d_optimizer')
else:
d_step = None
d_lrate = None
d_train_op = None
# add all to summaries
tf.summary.scalar(tensor=train_psnr_error, name='train_psnr_error')
tf.summary.scalar(tensor=test_psnr_error, name='test_psnr_error')
tf.summary.scalar(tensor=g_loss, name='g_loss')
tf.summary.scalar(tensor=adv_loss, name='adv_loss')
tf.summary.scalar(tensor=dis_loss, name='dis_loss')
tf.summary.image(tensor=train_outputs, name='train_outputs')
tf.summary.image(tensor=train_gt, name='train_gt')
tf.summary.image(tensor=test_outputs, name='test_outputs')
tf.summary.image(tensor=test_gt, name='test_gt')
summary_op = tf.summary.merge_all()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# summaries
summary_writer = tf.summary.FileWriter(summary_dir, graph=sess.graph)
# initialize weights
sess.run(tf.global_variables_initializer())
print('Init successfully!')
if lam_flow != 0:
# initialize flownet
initialize_flownet(sess, const.FLOWNET_CHECKPOINT)
# tf saver
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=None)
restore_var = [v for v in tf.global_variables()]
loader = tf.train.Saver(var_list=restore_var)
if os.path.isdir(snapshot_dir):
ckpt = tf.train.get_checkpoint_state(snapshot_dir)
if ckpt and ckpt.model_checkpoint_path:
load(loader, sess, ckpt.model_checkpoint_path)
else:
print('No checkpoint file found.')
else:
load(loader, sess, snapshot_dir)
_step, _loss, _summaries = 0, None, None
while _step < iterations:
try:
if adversarial:
print('Training discriminator...')
_, _d_lr, _d_step, _dis_loss = sess.run([d_train_op, d_lrate, d_step, dis_loss])
else:
_d_step = 0
_d_lr = 0
_dis_loss = 0
print('Training generator...')
_, _g_lr, _step, _lp_loss, _gdl_loss, _adv_loss, _flow_loss, _g_loss, _train_psnr, _summaries = sess.run(
[g_train_op, g_lrate, g_step, lp_loss, gdl_loss, adv_loss, flow_loss, g_loss, train_psnr_error, summary_op])
if _step % 10 == 0:
print('DiscriminatorModel: Step {} | Global Loss: {:.6f}, lr = {:.6f}'.format(_d_step, _dis_loss, _d_lr))
print('GeneratorModel : Step {}, lr = {:.6f}'.format(_step, _g_lr))
print(' Global Loss : ', _g_loss)
print(' intensity Loss : ({:.4f} * {:.4f} = {:.4f})'.format(_lp_loss, lam_lp, _lp_loss * lam_lp))
print(' gradient Loss : ({:.4f} * {:.4f} = {:.4f})'.format( _gdl_loss, lam_gdl, _gdl_loss * lam_gdl))
print(' adversarial Loss : ({:.4f} * {:.4f} = {:.4f})'.format(_adv_loss, lam_adv, _adv_loss * lam_adv))
print(' flownet Loss : ({:.4f} * {:.4f} = {:.4f})'.format(_flow_loss, lam_flow, _flow_loss * lam_flow))
print(' PSNR Error : ', _train_psnr)
if _step % 100 == 0:
summary_writer.add_summary(_summaries, global_step=_step)
print('Save summaries...')
if _step % 1000 == 0:
save(saver, sess, snapshot_dir, _step)
except tf.errors.OutOfRangeError:
print('Finish successfully!')
save(saver, sess, snapshot_dir, _step)
break
|