1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
#include "tensorflow/core/framework/common_shape_fns.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"
namespace tensorflow {
using shape_inference::InferenceContext;
using shape_inference::ShapeHandle;
using shape_inference::DimensionHandle;
Status SetOutputToSizedImage(InferenceContext *c) {
ShapeHandle input;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 4, &input));
DimensionHandle batch = c->Dim(input, 0);
DimensionHandle depth = c->Dim(input, 3);
std::vector<int32> crop_;
c->GetAttr("crop", &crop_);
DimensionHandle height = c->MakeDim(crop_[0]);
DimensionHandle width = c->MakeDim(crop_[1]);
c->set_output(0, c->MakeShape({ batch, height, width, depth }));
return Status::OK();
}
REGISTER_OP("DataAugmentation")
.Input("image_a: float32")
.Input("image_b: float32")
.Input("global_step: int64")
.Attr("crop: list(int) >= 2")
.Attr("params_a_name: list(string)")
.Attr("params_a_rand_type: list(string)")
.Attr("params_a_exp: list(bool)")
.Attr("params_a_mean: list(float)")
.Attr("params_a_spread: list(float)")
.Attr("params_a_prob: list(float)")
.Attr("params_a_coeff_schedule: list(float)")
.Attr("params_b_name: list(string)")
.Attr("params_b_rand_type: list(string)")
.Attr("params_b_exp: list(bool)")
.Attr("params_b_mean: list(float)")
.Attr("params_b_spread: list(float)")
.Attr("params_b_prob: list(float)")
.Attr("params_b_coeff_schedule: list(float)")
.Output("aug_image_a: float32")
.Output("aug_image_b: float32")
.Output("transforms_from_a: float32")
.Output("transforms_from_b: float32")
.SetShapeFn([](InferenceContext *c) {
// Verify input A and input B both have 4 dimensions
ShapeHandle input_shape_a, input_shape_b;
TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 4, &input_shape_a));
TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 4, &input_shape_b));
// TODO: Verify params vectors all have the same length
// TODO: Move this out of here and into Compute
// Verify input A and input B are the same shape
DimensionHandle batch_size, unused;
TF_RETURN_IF_ERROR(c->WithValue(c->Dim(input_shape_a, 0),
c->Value(c->Dim(input_shape_b, 0)),
&batch_size));
TF_RETURN_IF_ERROR(c->WithValue(c->Dim(input_shape_a, 1),
c->Value(c->Dim(input_shape_b, 1)), &unused));
TF_RETURN_IF_ERROR(c->WithValue(c->Dim(input_shape_a, 2),
c->Value(c->Dim(input_shape_b, 2)), &unused));
TF_RETURN_IF_ERROR(c->WithValue(c->Dim(input_shape_a, 3),
c->Value(c->Dim(input_shape_b, 3)), &unused));
// Get cropping dimensions
std::vector<int32>crop_;
TF_RETURN_IF_ERROR(c->GetAttr("crop", &crop_));
// Reshape input shape to cropped shape
TF_RETURN_IF_ERROR(c->ReplaceDim(input_shape_a, 1, c->MakeDim(crop_[0]),
&input_shape_a));
TF_RETURN_IF_ERROR(c->ReplaceDim(input_shape_a, 2, c->MakeDim(crop_[1]),
&input_shape_a));
// Set output images shapes
c->set_output(0, input_shape_a);
c->set_output(1, input_shape_a);
// Set output spatial transforms shapes
c->set_output(2, c->MakeShape({ batch_size, 6 }));
c->set_output(3, c->MakeShape({ batch_size, 6 }));
return Status::OK();
});
REGISTER_OP("FlowAugmentation")
.Input("flows: float32")
.Input("transforms_from_a: float32")
.Input("transforms_from_b: float32")
.Attr("crop: list(int) >= 2")
.Output("transformed_flows: float32")
.SetShapeFn(SetOutputToSizedImage);
} // namespace tensorflow
|