1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
import abc
from enum import Enum
import os
import tensorflow as tf
from .flowlib import flow_to_image, write_flow
import numpy as np
# from scipy.misc import imread, imsave, imresize
import cv2
import uuid
from .training_schedules import LONG_SCHEDULE
slim = tf.contrib.slim
os.environ['CUDA_DEVICES_ORDER'] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
class Mode(Enum):
TRAIN = 1
TEST = 2
class Net(object):
__metaclass__ = abc.ABCMeta
def __init__(self, mode=Mode.TRAIN, debug=False):
self.global_step = slim.get_or_create_global_step()
self.mode = mode
self.debug = debug
@abc.abstractmethod
def model(self, inputs, training_schedule, trainable=True):
"""
Defines the model and returns a tuple of Tensors needed for calculating the loss.
"""
return
@abc.abstractmethod
def loss(self, **kwargs):
"""
Accepts prediction Tensors from the output of `model`.
Returns a single Tensor representing the total loss of the model.
"""
return
"""
python -m src.flownet_sd.test --input_a /home/liuwen/ssd/videogan/Save_2017_05_31/Images/ped1_adv/Evaluate/model.ckpt-100000/01/gen_6.png \
--input_b /home/liuwen/ssd/videogan/Save_2017_05_31/Images/ped1_adv/Evaluate/model.ckpt-100000/01/gen_7.png \
--out ./
python -m src.flownet_sd.test --input_a 006.png --input_b 007.png --out ./
python -m src.flownet_sd.test --input_a /home/liuwen/ssd/videogan/ped1/frames/testing/01/006.jpg \
--input_b /home/liuwen/ssd/videogan/ped1/frames/testing/01/007.jpg \
--out ./
"""
def test(self, checkpoint, input_a_path, input_b_path, out_path, save_image=True, save_flo=False):
input_a = cv2.imread(input_a_path)
input_b = cv2.imread(input_b_path)
input_a = cv2.resize(input_a, (512, 384))
input_b = cv2.resize(input_b, (512, 384))
print(input_a.shape, input_b.shape)
# Convert from RGB -> BGR
# input_a = input_a[..., [2, 1, 0]]
# input_b = input_b[..., [2, 1, 0]]
# Scale from [0, 255] -> [0.0, 1.0] if needed
if input_a.max() > 1.0:
input_a = input_a / 255.0
if input_b.max() > 1.0:
input_b = input_b / 255.0
# TODO: This is a hack, we should get rid of this
training_schedule = LONG_SCHEDULE
inputs = {
'input_a': tf.expand_dims(tf.constant(input_a, dtype=tf.float32), 0),
'input_b': tf.expand_dims(tf.constant(input_b, dtype=tf.float32), 0),
}
predictions = self.model(inputs, training_schedule)
pred_flow = predictions['flow']
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
saver.restore(sess, checkpoint)
pred_flow = sess.run(pred_flow)[0, :, :, :]
np.save('temporal_ped1', pred_flow)
unique_name = 'flow-' + str(uuid.uuid4())
if save_image:
flow_img = flow_to_image(pred_flow)
full_out_path = os.path.join(out_path, unique_name + '.png')
cv2.imwrite(full_out_path, flow_img)
if save_flo:
full_out_path = os.path.join(out_path, unique_name + '.flo')
write_flow(pred_flow, full_out_path)
def train(self, log_dir, training_schedule, input_a, input_b, flow, checkpoints=None):
tf.summary.image("image_a", input_a, max_outputs=2)
tf.summary.image("image_b", input_b, max_outputs=2)
self.learning_rate = tf.train.piecewise_constant(
self.global_step,
[tf.cast(v, tf.int64) for v in training_schedule['step_values']],
training_schedule['learning_rates'])
optimizer = tf.train.AdamOptimizer(
self.learning_rate,
training_schedule['momentum'],
training_schedule['momentum2'])
inputs = {
'input_a': input_a,
'input_b': input_b,
}
predictions = self.model(inputs, training_schedule)
total_loss = self.loss(flow, predictions)
tf.summary.scalar('loss', total_loss)
if checkpoints:
for (checkpoint_path, (scope, new_scope)) in checkpoints.iteritems():
variables_to_restore = slim.get_variables(scope=scope)
renamed_variables = {
var.op.name.split(new_scope + '/')[1]: var
for var in variables_to_restore
}
restorer = tf.train.Saver(renamed_variables)
with tf.Session() as sess:
restorer.restore(sess, checkpoint_path)
# Show the generated flow in TensorBoard
if 'flow' in predictions:
pred_flow_0 = predictions['flow'][0, :, :, :]
pred_flow_0 = tf.py_func(flow_to_image, [pred_flow_0], tf.uint8)
pred_flow_1 = predictions['flow'][1, :, :, :]
pred_flow_1 = tf.py_func(flow_to_image, [pred_flow_1], tf.uint8)
pred_flow_img = tf.stack([pred_flow_0, pred_flow_1], 0)
tf.summary.image('pred_flow', pred_flow_img, max_outputs=2)
true_flow_0 = flow[0, :, :, :]
true_flow_0 = tf.py_func(flow_to_image, [true_flow_0], tf.uint8)
true_flow_1 = flow[1, :, :, :]
true_flow_1 = tf.py_func(flow_to_image, [true_flow_1], tf.uint8)
true_flow_img = tf.stack([true_flow_0, true_flow_1], 0)
tf.summary.image('true_flow', true_flow_img, max_outputs=2)
train_op = slim.learning.create_train_op(
total_loss,
optimizer,
summarize_gradients=True)
if self.debug:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
tf.train.start_queue_runners(sess)
slim.learning.train_step(
sess,
train_op,
self.global_step,
{
'should_trace': tf.constant(1),
'should_log': tf.constant(1),
'logdir': log_dir + '/debug',
}
)
else:
slim.learning.train(
train_op,
log_dir,
# session_config=tf.ConfigProto(allow_soft_placement=True),
global_step=self.global_step,
save_summaries_secs=60,
number_of_steps=training_schedule['max_iter']
)
|