summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'README.md')
-rw-r--r--README.md14
1 files changed, 7 insertions, 7 deletions
diff --git a/README.md b/README.md
index 65af431..ea81bd2 100644
--- a/README.md
+++ b/README.md
@@ -1,5 +1,5 @@
# Future Frame Prediction for Anomaly Detection -- A New Baseline
-This repo is the official open source of [Future Frame Prediction for Anomaly Detection -- A New Baseline, CVPR 2018](https://arxiv.org/pdf/1712.09867.pdf) by Wen Liu, Weixinluo, Dongze Lian and Shenghua Gao.
+This repo is the official open source of [Future Frame Prediction for Anomaly Detection -- A New Baseline, CVPR 2018](https://arxiv.org/pdf/1712.09867.pdf) by Wen Liu, Weixin Lluo, Dongze Lian and Shenghua Gao.
A **demo** is shown in *https://www.youtube.com/watch?v=M--wv-Y_h0A*. It is implemented in tensorflow. Please follow the instructions to run the code.
## 1. Installation (Anaconda with python3.6 installation is recommended)
@@ -8,7 +8,7 @@ A **demo** is shown in *https://www.youtube.com/watch?v=M--wv-Y_h0A*. It is impl
numpy==1.14.1
scipy==1.0.0
matplotlib==2.1.2
-tensorflow_gpu==1.4.1
+tensorflow-gpu==1.4.1
tensorflow==1.4.1
Pillow==5.0.0
pypng==0.0.18
@@ -37,7 +37,7 @@ cd Data
## 3. Testing on saved models
* Download the trained models
```shell
-cd models
+cd checkpoints
./download_pretrains.sh
```
* Running the sript (as ped2 and avenue datasets for examples) and cd into **Codes** folder at first.
@@ -45,14 +45,14 @@ cd models
python inference.py --dataset ped2 \
--test_folder ../Data/ped2/testing/frames \
--gpu 1 \
- --snapshot_dir models/pretrains/ped2
+ --snapshot_dir checkpoints/pretrains/ped2
```
```shell
python inference.py --dataset avenue \
--test_folder ../Data/avenue/testing/frames \
--gpu 1 \
- --snapshot_dir models/pretrains/avenue
+ --snapshot_dir checkpoints/pretrains/avenue
```
@@ -111,8 +111,8 @@ Open the browser and type **https://ip:10086**. Following is the screen shot of
![scalars_tensorboard](assets/scalars.JPG)
![images_tensorboard](assets/images.JPG)
-Since all frames are loaded into BGR channels in training and testing, the visualized images look different from RGB channels.
-
+Since the models are trained in BGR image color channels, the visualized images in tensorboard look different from RGB channels.
+In the demo, we change the output images from BGR to RGB.
## Notes
The flow loss (temporal loss) module is based on [a TensorFlow implementation of FlowNet2](https://github.com/sampepose/flownet2-tf). Thanks for their nice work.