summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
authorStevenLiuWen <liuwen@shanghaitech.edu.cn>2018-03-13 03:46:45 -0400
committerGitHub <noreply@github.com>2018-03-13 03:46:45 -0400
commitbfee5daff018b2555c0f82270bf0468917e7c5c5 (patch)
tree58646708cf4d87c36826223c4663903453c651c5 /README.md
parent09316d6f2c4cc22675bb66dd5bdef7c417ccbdd4 (diff)
Update README.md
Diffstat (limited to 'README.md')
-rw-r--r--README.md8
1 files changed, 4 insertions, 4 deletions
diff --git a/README.md b/README.md
index 7985c76..0441115 100644
--- a/README.md
+++ b/README.md
@@ -2,7 +2,7 @@
This repo is the official open source of [Future Frame Prediction for Anomaly Detection -- A New Baseline, CVPR 2018](https://arxiv.org/pdf/1712.09867.pdf) by Wen Liu, Weixinluo, Dongze Lian and Shenghua Gao.
A **demo** is shown in *https://www.youtube.com/watch?v=M--wv-Y_h0A*. It is implemented in tensorflow. Please follow the instructions to run the code.
-####1. Installation (Anaconda with python3.6 installation is recommended)
+#### 1. Installation (Anaconda with python3.6 installation is recommended)
* Install 3rd-package dependencies of python (listed in requirements.txt)
```
numpy==1.14.1
@@ -24,7 +24,7 @@ pip install -r requirements.txt
CUDA 8.0
Cudnn 6.0
```
-####2. Download datasets
+#### 2. Download datasets
cd into Data folder of project and run the shell scripts (**ped1.sh, ped2.sh, avenue.sh, shanghaitech.sh**) under the Data folder.
```shell
cd Data
@@ -34,7 +34,7 @@ cd Data
./shanghaitech.sh
```
-####3. Testing on saved models
+#### 3. Testing on saved models
* Download the trained models
```shell
cd models
@@ -56,7 +56,7 @@ python inference.py --dataset avenue \
```
-####4. Training from scratch (here we use ped2 and avenue datasets for examples)
+#### 4. Training from scratch (here we use ped2 and avenue datasets for examples)
* Set hyper-parameters
The default hyper-parameters, such as $\lambda_{init}$, $\lambda_{gd}$, $\lambda_{op}$, $\lambda_{adv}$ and the learning rate of G, as well as D, are all initialized in **training_hyper_params/hyper_params.ini**.
* Running script (as ped2 or avenue for instances) and cd into **Codes** folder at first.