diff options
| author | StevenLiuWen <liuwen@shanghaitech.edu.cn> | 2018-03-13 03:28:06 -0400 |
|---|---|---|
| committer | StevenLiuWen <liuwen@shanghaitech.edu.cn> | 2018-03-13 03:28:06 -0400 |
| commit | fede6ca1dd0077ff509d84bd24028cc7a93bb119 (patch) | |
| tree | af7f6e759b5dec4fc2964daed09e903958b919ed /Codes/flownet2/src/ops/downsample/downsample_kernel_gpu.cu.cc | |
first commit
Diffstat (limited to 'Codes/flownet2/src/ops/downsample/downsample_kernel_gpu.cu.cc')
| -rw-r--r-- | Codes/flownet2/src/ops/downsample/downsample_kernel_gpu.cu.cc | 108 |
1 files changed, 108 insertions, 0 deletions
diff --git a/Codes/flownet2/src/ops/downsample/downsample_kernel_gpu.cu.cc b/Codes/flownet2/src/ops/downsample/downsample_kernel_gpu.cu.cc new file mode 100644 index 0000000..b7629a0 --- /dev/null +++ b/Codes/flownet2/src/ops/downsample/downsample_kernel_gpu.cu.cc @@ -0,0 +1,108 @@ +#if GOOGLE_CUDA + +#define EIGEN_USE_GPU + +#include <stdio.h> +#include <iostream> + +#include "downsample_kernel.h" +#include "tensorflow/core/framework/register_types.h" +#include "tensorflow/core/framework/types.h" +#include "tensorflow/core/framework/tensor_types.h" +#include "tensorflow/core/platform/types.h" +#include "tensorflow/core/util/cuda_kernel_helper.h" + +#define CUDART_NAN_F __int_as_float(0x7fffffff) + +namespace tensorflow { + +typedef Eigen::GpuDevice GPUDevice; + +__global__ void DownsampleKernel( + const int32 nthreads, + const float* input_ptr, + float* output_ptr, + const int in_width, + const int in_height, + const int out_width, + const int out_height, + const int channels, + const float width_scale, + const float height_scale, + const int wradius, + const int hradius) { + CUDA_1D_KERNEL_LOOP(index, nthreads) { + const int c = index % channels; + const int destx = (index / channels) % out_width; + const int desty = (index / channels / out_width) % out_height; + const int n = (index / channels / out_width) / out_height; + + const float srcx = ((float)destx / (float)(out_width - 1)) * (float)(in_width - 1); + const float srcy = ((float)desty / (float)(out_height - 1)) * (float)(in_height - 1); + + const int isrcx = round(srcx); + const int isrcy = round(srcy); + + float accum_value = 0; + float accum_weight = 0; + float accum_nan = 0; + + for (int dy = -hradius; dy <= hradius; dy++) { + int yoff = isrcy + dy; + // + for (int dx = -wradius; dx <= wradius; dx++) { + int xoff = isrcx + dx; + + if (xoff >= 0 && yoff >= 0 && xoff < in_width && yoff < in_height) { + int idx = ((n * in_height + yoff) * in_width + xoff) * channels + c; + float sample = input_ptr[idx]; + float weight = fmaxf(0.0f, 1.0f - (fabsf((float)xoff - srcx) / width_scale)) + * fmaxf(0.0f, 1.0f - (fabsf((float)yoff - srcy) / height_scale)); + if (sample != sample) { // isnan + accum_nan += weight; + sample = 0; + weight = 0; + } + accum_value += sample * weight; + accum_weight += weight; + } + } + } + + if (accum_nan / accum_weight > 0.5) { + output_ptr[index] = CUDART_NAN_F; + } else { + output_ptr[index] = accum_value / accum_weight; + } + } +} + +bool Downsample(const GPUDevice& device, + typename TTypes<float, 4>::ConstTensor input, + typename TTypes<float, 4>::Tensor output) { + const int batch_size = output.dimension(0); + const int out_height = output.dimension(1); + const int out_width = output.dimension(2); + const int out_channels = output.dimension(3); + const int total_count = batch_size * out_height * out_width * out_channels; + + const int in_height = input.dimension(1); + const int in_width = input.dimension(2); + + const float width_scale = (float)(in_width - 1) / (float)(out_width - 1); + const float height_scale = (float)(in_height - 1) / (float)(out_height - 1); + + const int wradius = ceil(width_scale); + const int hradius = ceil(height_scale); + + CudaLaunchConfig config = GetCudaLaunchConfig(total_count, device); + DownsampleKernel<<<config.block_count, config.thread_per_block, 0, + device.stream()>>>(total_count, input.data(), output.data(), + in_width, in_height, out_width, out_height, out_channels, + width_scale, height_scale, wradius, hradius); + return device.ok(); +} + +} // end namespace tensorflow + +#endif // GOOGLE_CUDA |
